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Abstract

Comparison between tumoral and healthy cells may reveal abnormal regulation behav-
iors between a transcription factor and the genes it regulates, without exhibiting differential
expression of the former genes. We propose a methodology for the identification of tran-
scription factors involved in the deregulation of genes in tumoral cells. This strategy is
based on the inference of a reference gene regulatory network that connects transcription
factors to their downstream targets using gene expression data. Gene expression levels in
tumor samples are then carefully compared to this reference network to detect deregulated
target genes. A linear model is finally used to measure the ability of each transcription
factor to explain these deregulations. We assess the performance of our method by nu-
merical experiments on a public bladder cancer data set derived from the Cancer Genome
Atlas project. We identify genes known for their implication in the development of specific
bladder cancer subtypes as well as new potential biomarkers.

1 Introduction

Today, after decades of intensive research, cancer is still one of the most deadly diseases world-
wide, killing millions of people every year. Cancer is mainly caused by somatic mutations
that affect critical genes and pathways. These mutations are triggered by both intrinsic (like
replication errors) and environmental factors (e.g. obesity, smoking, alcohol, lifestyle,...) of-
ten promoted by certain genetic configurations. In the last two decades, large-scale projects,
such as the Cancer Genome Atlas project (TCGA), which has produced massive amounts of
multi-omics data, have launched to improve our understanding of cancers [33]. In this context,
developing statistical algorithms able to interpret these large data sets and to identify genes
that are the origin of diseases and their causal pathways still remains an important challenge.

Genes are commonly affected by genomic changes in the pathogenesis of human cancer.
Cancer is moreover a heterogeneous disease, with affected gene sets that may be highly different
depending on subtypes, and thus requires different treatments of patients. Specific analyses of
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subtypes have for example revealed significant differences between breast cancer subgroups [13]
but also pancancer similarities between breast and bladder cancer subgroups [17].

Using transcriptional data allows to look beyond DNA, that is to study abnormalities in
terms of gene expression. As a common approach, differential expression analysis, for which
statistical procedures have been intensively explored, can be performed and altered genes are
then differentially expressed genes [12]. This points to relevant genes but does not take into
account the regulations (activation and inhibition) between genes.

The approach we consider consists in taking into account the regulation structure between
genes. We particularly focus on transcription factors (TFs), for their major role played in the
regulation of gene expression, which make them an attractive target for cancer therapy [30, 37].
Regulation processes between TFs and their targets are usually represented by Gene Regulatory
Networks (GRNs). In the last few years, many different methods have been proposed to infer
GRNs from collections of gene expression data. In a discrete framework, gene expression can
be discretized depending on their status (under/over-expressed or normal) and truth tables
provide the regulation structure [8]. In the continuous case, regression methods, including the
popular Lasso [34] and its derivatives, have provided powerful results [19, 26].

A deregulated gene then corresponds to a gene whose expression does not correspond to
the expression level expected from its regulators expression. It is different from the notion of
differential expression since a loss of regulation between a target gene and one of its regulat-
ing TFs implies a loss of correlation between them but not necessarily differential expression.
Conversely, a TF can be differentially expressed and one of its targets not, precisely because it
is deregulated.

To discover deregulated genes, a first possibility is to infer one network per condition and
to compare them. Statistical difficulties due to the noisy nature of transcriptomic data and the
large number of features compared to the sample size can be taken into account by inferring the
networks jointly and penalizing the differences between them [3]. A second possible approach is
to assess the adequacy of gene expression in tumoral cells to a reference GRN, in order to exhibit
the most striking discrepancies, i.e. the regulations which are not fulfilled by the data [22, 24].
Such methods however focus on checking the validity of the network rather than highlighting
genes with an abnormal behavior. Finally, analyses may be conducted at the pathway level
rather than the gene level [11, 14]. They are then not network-wide in the sense that each gene
has a deregulation score by pathway it belongs to and pathways are treated independently.
Moreover, as the pathways are extracted from curated databases, the regulations taken into
account are not tissue-specific.

Here, we propose a statistical deregulation model that uses gene expression data to identify
deregulated TFs involved in specific subtypes of cancer. This paper is organized as follows: in
Section 1, we present the 3-steps method we developed and our validation procedure. In Section
2, we illustrate its interest on the TCGA bladder cancer data set. We show that it can be used
complementary to differential expression analysis to point to potential biomarkers of cancers.

2 Methods

2.1 Overview of the Procedure

Our approach for the identification of deregulated transcription factors (TFs) involved in cancers
is based on a 3-steps strategy that (i) creates a reference gene regulatory network (GRN),
which represents regulations between groups of co-expressed TFs and target genes using a
reference data set (Step 1), (ii) computes a deregulation score for each target gene in each
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tumor sample by comparing their behavior with the reference GRN (Step 2), (iii) identifies
the most significant TFs involved in the deregulation of the target genes in each sample from
specific cancer subtypes (Step 3). These steps are presented in Figure 1 and described in detail
in the next sections.

GRN 
inference

Step 1

Deregulation score

Step 2

Target genes

Tumor samples

Subtypes

T
Fs

Step 3

Deregulated TFs

Figure 1: Workflow of the proposed 3-steps algorithm for identifying TFs involved in specific
cancer subtypes.

2.2 Step 1: Inferring a Gene Regulatory Network

Step 1 of the algorithm consists in inferring a GRN that connects TFs to their downstream
targets. Among the large number of existing methods, we choose hLICORN, available in the
CoRegNet R-package [31]. This algorithm is based on a hybrid version of the LICORN model
[18], in which groups of co-regulated TFs act together to regulate the expression of their targets
(Figure 2). More precisely, LICORN uses heuristic techniques to identify co-activator and co-
inhibitor sets from discretized gene expression matrices and locally associates each target gene
to pairs of co-activators and co-inhibitors that significantly explain its discretized expression.
The hybrid variation of LICORN then ranks the local candidate networks according to how
well they predict the target gene expression, through a linear regression, and selects the GRN
that minimizes the prediction error. This selection step limits the effects of overfitting, induced
by the model complexity, especially the large number of features (genes) as compared to the
sample size [16]. In this work, we slightly enrich the LICORN model by creating a copy of each
TF in the target layer to allow regulations between TFs.

To construct a specific GRN, note that one may prefer using another inference method [4]
or a pre-existing regulatory network, which can be loaded from the RegNetwork database [27].
Here, we focus on hLICORN since the induced model is particularly suitable for the rest of
our analysis. In addition, it was shown to provide powerful results for cooperative regulation
detection, especially on cancer data set [18, 31].
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TF1 TF2 TF3 TF4 TF5 TF6 TF7

g1 g2

TFs

Co-regulators

Target genes

Figure 2: Example of LICORN graph involving 7 TFs and 2 target genes. TFs are gathered into
groups of co-expressed genes that co-regulate (square for co-activators, circle for co-inhibitors)
each target gene.

2.3 Step 2: Computing a Deregulation Score

Step 2 of the algorithm aims at identifying deregulated target genes by carefully comparing
their expression across all tumor samples with the reference GRN inferred in Step 1. For this
purpose, we use the method described in [20], which assumes that all genes from a hLICORN
model are allowed to be deregulated, i.e. not to respond to their regulators as expected.

More precisely, according to the hLICORN model, each gene g is connected with a set of co-
regulated TFs split into a group of co-activators A and co-inhibitors I. A binary deregulation
variable Dg, assumed to be non-zero with probability Y , is then introduced to compare the true
status Sg (under/over-expressed or normal) of each target gene in each tumor sample with its
expected value S∗g , resulting from a truth Table (see Figure 3 (b)) and the inferred GRN. To
avoid discretization of the data, the status of all genes are considered as hidden variables. The
model is described in Figure 3 (a).

As the number of hidden variables grows exponentially with the number of genes, the like-
lihood of the model rapidly becomes intractable. The unknown parameters, including the
deregulation score Y , are thus estimated using a dedicated EM-algorithm (see [20] for more
details). Note that the deregulation score Y does not capture information about differentially
expressed genes but genes whose expression does not correspond to the level expected from its
regulator expression.

2.4 Step 3: Identifying Deregulated TFs

Step 3 consists in identifying TFs that cause deregulations of target genes. Our approach is
based on linear regression models, in which we try to explain the deregulation score of all target
genes in one sample (Step 2) using their co-regulator TFs as explanatory variables (Step 1).
Assume that we have q TFs and p target genes. Denote by Yij the deregulation score of target
gene i (1 ≤ i ≤ p) in sample j (1 ≤ j ≤ n) and G := (Gi`)1≤i≤p,1≤`≤q the GRN adjacency
matrix, whose non-zero elements encode the structure (edges) of the graph. We then cast our
model as follows:

∀j ∈ J1, nK,∀i ∈ J1, pK, Yij = Gi` ·B`j + εij , (1)

or, in a matrix form, Y = G ·B+ ε, where each element B`j of matrix B, to estimate, measures
the deregulation importance of TF ` in sample j and ε stands for the presence of noise.

Solving the B-estimation problem (1) can be viewed as a classical multi-task linear learning
problem, in which the number of observations is the number of target genes p, the number
of linear tasks is n and the number of variables q. To estimate B, we use a constrained least
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(a) Deregulation model.
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(b) Truth table.

Figure 3: (a) The deregulation model [20] used to compute a deregulation score for each target
gene in each sample: each gene g is associated to a hidden status Sg (under, over-expressed
or normal). Target genes are allowed to be deregulated, i.e. not follow their co-regulator rules
(Truth table (b)). The binary variable Dg indicates whether the corresponding target gene g
is deregulated (Dg = 1) or not (Dg = 0). The deregulation score Y of gene g in sample j
is then the probability, given the observation, that Dg = 1 in sample j. (b) LICORN truth
table, which gives the expected status of a target gene according to the collective status of its
co-activators and co-inhibitors. Collective status are set by default to 0 except if and only if all
of its elements share the same status. This table is derived from biological experiments [18].

squares estimation procedure. As we only expect to find TFs positively causing the deregulation
of their targets in each sample, we consider the induced constrained optimization problem:

∀j ∈ J1, nK, B̂·j := argmin
β∈Rq

‖Y·j −Gβ‖22, (2)

s.t ∀` ∈ J1, qK, 0 ≤ β` ≤ 1

where ‖.‖22 stands for the euclidian norm. The closer B̂`j is to 1, the more important the role
of TF ` in the deregulation of its targets in sample j. To solve Eq. (2), we use the limSolve

R-package.

2.5 Correcting Expression Data

Gene expression is commonly affected by copy number alterations (CNA) [1]. Step 2 of our
procedure is particularly sensitive to CNA, associating high deregulation scores to amplified
or deleted target genes [20]. Indeed, the number of copies of a gene can strongly influence
its expression, independently from its regulators expression, making some regulations wrongly
deregulated.

To remove CNA effects on gene expression and improve the rest of our analysis, we preprocess
target genes expression data beforehand as proposed in [15]. Gene expression is considered as

5



Identification of Deregulated TFs in Bladder Cancer Champion, Chiquet, Neuvial, Elati, Radvanyi, Birmelé

linearly modified by CNA through the linear regression model:

Xij = α0 + α1CNAij + εij , (3)

where Xij is the expression of gene j in sample i and CNAij its associated copy number. Let
α̂0 and α̂1 be the estimated solutions of Eq. (3), the corrected expression is then given by:

X̃ij = Xij − α̂0 − α̂1CNAij .

3 Results and Discussion

3.1 The Bladder Cancer Data Set

We apply our method on bladder cancer data, produced in the framework of the Cancer Genome
Atlas (TCGA) project and available at the Genomic Data Commons Data Portal (https:
//portal.gdc.cancer.gov/). These data include a set of 401 bladder cancer samples with
gene expression and copy number for a total number of 15,430 genes, split into 2,020 TFs and
13,410 targets. Gene expression data were produced using RNA-sequencing on bladder cancer
tissues. Preprocessing is done by log-transformation and quantile-normalization of the arrays.
Missing values are estimated using nearest neighbor averaging [36]. TCGA samples are analyzed
in batches and significant batch effects are observed based on a one-way analysis of variance in
most data modes. We apply Combat [23] to adjust for these effects. Genes are finally filtered
based on their variability: among them, we only keep the 75% most varying genes.

Based on RNA-seq data analysis from the TCGA data portal, samples are split into five
subtypes: basal-squamous (BaSq), luminal (Lum), luminal-infiltrated (LumI), luminal-papillary
(LumP) and neuronal (NE) with different characteristics [10] (Table 1).

Subtypes BaSq Lum LumI LumP NE

Samples 131 44 74 134 18

Table 1: Molecular subtypes distribution of the 401 bladder cancer samples [10] .

3.2 Description of the Procedure Results

GRN network. To validate our method, we have to provide a tissue-specific reference GRN
(Step 1), which is computed given a first set of reference samples. In many cancers, the pure
normal tissue of origin is not available. Here, we work with the five different subtypes of the
TCGA data set presented in Section 3.1. Using samples from one subtype as test cases and
the rest as reference, we infer five different GRNs. Each of them reflect averaged relationships
between genes for patients who are not part of one specific subtype. Due to the very-high
heterogeneity of cancers, especially of bladder cancers [25, 35], we think that our method will
still point to relevant deregulations of specific subtypes.

After calibrating the internal parameters of the hLICORN agorithm, the GRNs we infer
are made of an averaged total number of 28, 246 edges connecting 586 TFs to 3, 432 of their
targets. These networks are relatively sparse, each of the target genes being associated with an
averaged number of 8 TFs.
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Deregulation scores. We then run five times the EM procedure (Step 2) on the five subsets
of the gene expression data matrix to compute a deregulation score of each target gene in each
sample of each subtype. From now on, all samples are treated individually, the results reflecting
how genes behaved in each sample of one subtype in comparison to reference samples from all
other subtypes.

To check the effect of the copy number correction we apply at the beginning of our procedure,
we compare the distribution of the deregulation scores across copy number states. To this aim,
we use the TCGA CNA thresholded data set, which associates to each gene-sample pair a
copy number state of “0” for the diploid state (two copies), “1” for a copy number gain, “-1”
for a copy number loss, “2” for an amplification and “-2” for a deletion. We then test for
significant differences between the diploid state and the altered states (-2,-1,1,2) using Student
tests. Results in terms of p-values, which are corrected for multiple hypothesis testing using the
FDR [2], are presented in Table 2. With corrected p-values ranging from 0.10 to 1, deregulation
scores are no longer associated with CNA.

Subtypes

BaSq Lum LumI LumP NE

-2 -1 1 2 -2 -1 1 2 -2 -1 1 2 -2 -1 1 2 -2 -1 1 2
1 0.81 0.28 1 1 1 1 1 1 0.25 0.10 0.60 1 1 1 1 1 1 1 1

Table 2: Corrected p-values for Student tests when comparing the distribution of the deregu-
lation scores between the diploid state (0) and each altered state (-2,-1,1,2) for each subtype.

Deregulated TFs. We finally apply Step 3 of our method to identify TFs involved in the
deregulation scores of the target genes, that is having a non-zero coefficient in B̂, as given in
Eq. (1). We then rank the TFs according to their number of non-zero coefficients across all
samples belonging to each specific subtype. Results are presented in Table 3.

Subtypes

BaSq Lum LumI LumP NE

TF %B̂ TF %B̂ TF %B̂ TF %B̂ TF %B̂

SPOCD1 92% ZNF268 91% TSHZ1 88% RARB 84% FAIM3 89%
ZNF382 86% HES2 80% ZNF354B 88% RFX5 84% SMARCA2 83%
RCOR2 86% TBX2 80% AR 85% CBFA2T3 83% RARB 78%

ATM 83% PRDM8 75% HES2 82% TBX18 81% ZNF235 78%
HABP4 83% TSHZ1 75% HTATIP2 81% TBX3 79% TBX2 72%
IRX3 82% ZNF354C 73% MAFG 80% PTRF 79% STAT3 72%
IFI16 79% RARB 70% ENO1 80% TBX2 70% HIF1A 72%

TEAD2 79% KLF13 70% TBX2 74% PPARG 76% THRA 72%
NOTCH4 79% SCML2 68% ZNF563 74% NCOR2 75% PIR 67%

SNAI2 79% SNAI3 68% IRX3 72% ZFP2 75% FOSL1 67%

Table 3: List of the 10 most important TFs for explaining the deregulation scores of their
targets and number of non-zero coefficients in B̂ (in %) across all samples from each subtype.
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3.3 Discussion

Top TFs include biomarkers of bladder cancer. Among TFs of Table 3, we retrieve
characteristic genes of bladder cancer subtypes. For instance, SNAI2, which is deregulated
across 79% of the BaSq samples, is particularly well-known for its implication in EMT pathways
for cancer patients [6] and its capacity to discriminate between basal and luminal subgroups [29].
The presence of NOTCH4 in BaSq samples is particularly interesting as it is part of the NOTCH
pathway, whose inactivation tends to promote bladder cancer progression [28]. Research works
also focus on its implication on the basal subgroup [21]. Similarly, TBX2, involved in all three
luminal subtypes is an indicator of luminal cancers [7]. We can finally emphasize the presence
of PPARG in LumP, a TF whose high level of expression is used to describe luminal subtypes
and which has been shown to have a protumorigenic role in these subtypes [5, 9].

Deregulation is complementary to differential gene expression analysis Differen-
tial gene expression analysis consists in performing statistical analysis to discover quantitative
changes in terms of expression levels between groups. It is frequently used in cancer research to
identify genes with important changes between tumor and normal samples, called differentially
expressed genes (DEGs) [32].

We perform differential gene expression analysis using the R-package limma [32] on all sam-
ples from each subtype when comparing to samples from all other subtypes. We then verify
whether the identified DEGs are different from the deregulated TFs derived from our method
(Figure 4). To this aim, we use the following thresholds: a gene is called DEG for p-values
smaller than 0.01 whereas it is deregulated for a subtype as soon as it is deregulated (B̂ 6= 0)
for more than the 50% of the subtype samples. This threshold is purely arbitrary but is not
crucial, as the results remain almost the same with slight changes. As shown in Figure 4, except
for BaSq and LumP subtypes, more than the 70% of the identified deregulated TFs are not
differentially expressed, which means that our procedure does not only point to DEGs.

879 48107

BaSq

193 6517

Lum

366 5723

LumI

784 4591

LumP

337 4612

NE

Figure 4: Venn Diagrams representing the number of DEGs (in pink), the number of deregulated
TFs identified by our method (in blue) and their intersection.

Conclusion

With the aim of understanding the deregulation processes in tumoral cells, we develop a 3-steps
strategy that measures the influence of TFs in the deregulation of genes in tumor samples. A list
of TFs characterizing given subtypes can then be established. Even if a biological experimental
validation should be done in future work, it seems that it can be used complementary to
differential gene expression analysis to point to potential biomarkers of cancers.

An open question, which has also to be tackled, is to determine in which extend the in-
formation carried by mutations can explain the deregulations. Mutation data are particularly
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hard to explore in this context due to various reasons : first of all, mutations do not necessarily
affect gene expression. Secondly, in cancers, besides the most significant mutated genes, many
sequencing projects have shown that genes are mutated in less than 5% of the samples.

In this work, among the identified TFs of Table 3, ATM is highly deregulated (83%) and
mutated (15%) for BaSq samples. Mutations of ATM have been recently shown to be associ-
ated with shorter survival in urothelial cancers [38]. As a preliminary result, we observe that
95% of the mutated BaSq samples, i.e 18 of the 19 samples, corresponds to non-zero B̂ coeffi-
cients. However, the number of samples is still too small to positively conclude for a significant
association. Supplementary works need to be done to go further.

Availability of supporting data The algorithm (written in R) and data described in this
article are available on GitHub at https://github.com/magalichampion/LIONS_project.
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