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Abstract

Studying  biological  systems  is  difficult  because  of  complexity,  variability,  and
uncertainty. Conceptual models and diagrams are useful in conveying ideas about how a
biological phenomenon are thought to be generated. However,  sophisticated modeling
and  simulation  methods  are  needed  to  discover  mechanism-based  explanations.
Presented herein is a new and unique methodology for this application. Using virtual
experiment methods, we recently provided a plausible solution to a problem that had
eluded and perplexed pharmacologists and toxicologists for more than 40 years. We
describe  how  virtual  and  real-world  experimentation  can  be  complementary,  and
propose a way to partially automate the methodology to expedite research.

1 Introduction
This paper introduces current and future research methodological ideas, and presents results for a

specific  application.  The  first  subsection  discusses  the  analogy  between  biological  and  software
systems. This software system or Biomimetic Software Analog is designed to be biomimetic, and thus
analogous to biological systems, e.g. organisms. The second subsection discusses Model Mechanisms
(MMs) as hypotheses to explain target phenomenon and their use in the Analogs. The third subsection
discusses Virtual Experiments (VEs), which function analogous to real-world experiments. Finally,
the fourth subsection discusses  the Iterative Refinement Protocol (IRP),  the core methodology of
Virtual Experiments that tests and selects Model Mechanisms. 

The second section discusses a specific application of virtual experiments and the IRP to plasma
alanine transaminase (ALT) levels in mice. This research work translates to relevant clinical issues.
The final section discusses a proposed Experiment Agent (EA), a semi-autonomous AI that conducts
virtual experiments.
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1.1 Biomimetic Software Analogs
A biological system, e.g. an organism, is composed of many subsystems organized in space (e.g.

organs → tissue → cells) and time (e.g. transcription before translation), organized hierarchically. A
coarse-grained conceptual model of a biological system can be envisioned as a system with a defined
interface composed as a hierarchical  network of subsystems, each with its  own defined interface.
Certain objects can move across the interface. This conceptual model is rooted in Thermodynamics,
which can be used to further formulate the model. Furthermore, an analogous software system can be
designed  to  have  the  same  structure  with  information  or  data  crossing  the  interface.  For  both
biological  and software systems,  a  subsystem can be structural  (i.e.  a  component  or  part)  and/or
perform an isolable function. A functional subsystem is composed of interacting parts. In addition, a
subsystem is modular, so that it is possible to exchange a subsystem with a different subsystem but the
function remains the same.

Both a biological and software systems are networks of subsystems. In our lab, we use a software
system to do science, i.e. to increase knowledge by testing and selecting hypotheses. This is done
through virtual experimentation, which contains an object of study and its context (see below). In
virtual experimentation, it is necessary to compare a software system to the referent biological system
of interest. Because the software system is a model or composed of subsystem models of the referent
biological system, the strength of the comparison or the strength of the  analogy between the two
systems gives credibility to the model (i.e. validation). There are two broad categories of validation,
which  we  will  characterize  as  face  and  structural.  Structural  validation  confirms  the  model  is
organized like the referent, and face validation tests whether the model behaves similar to the referent.
If it looks like a duck, quacks like a duck, then how can you tell the difference between a virtual or
real duck? The virtual duck is a Biomimetic Software Analog (BSA) because it is engineered to look
and behave like a real duck, under particular measures.

Figure 1. The comparison of a BSA, or virtual model system, to its referent biological system. The BSA is
translucent  because  it  is  engineered  with  “gears”,  the  MMs  that  are  thought  to  generate  and  explain  the
phenomena of the referent biological system. We abstract and embed knowledge from the referent biological
system into the BSA. Face validation precedes structural validation because of it is more important for the BSA
to behave than look like the referent system. We use analogical reasoning to explain the actual mechanisms in the
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real biological system.

The use of models in science is different than the use of models in engineering. Other than testing
and  selecting  hypotheses,  models  can  be  used  to  describe  data  obtained  through  wet-lab
experimentation or from mining knowledge databases. Bioinformatics is an example of this latter use
case. The direct goal is not to explain the data, or develop a mechanism to generate the data, but to
describe, analyze, and interpret the data. However, especially with the large bioinformatic datasets,
this analysis is a necessary step on the path to explanation. 

1.2 Model Mechanisms for Target Phenomenon
The details of MMs have been described thoroughly in the literature [1], so the following is a

relevant summary. A model is a hypothetical explanation of corresponding targeted phenomenon in
the referent biological subsystem. This hypothetical explanatory model is a MM. It is specified by
features  or  parameters,  composed  of  quasi-autonomous  components  (i.e.,  software  agents),  and
produces a behavior that can be measured and compared. Also, these measurements and observations
of MMs can be compared to wet lab measurements and observations of the referent biological system.
There can be a set of equally plausible MMs with each possibly explaining a phenomenon of the
referent  biological  system.  The  modularity  of  the  software  allows  these  MMs  to  be  variously
composed,  by  substituting  alternative  modules,  and  tested  through  virtual  experimentation.  A
mechanism, virtual or real, is defined [2] as entities and activities organized and orchestrated in such a
way  that  they  are  responsible  for  the  phenomenon  to  be  explained.  A MM emanates  from five
demanding  requirements  that  guide  software  engineering,  MM  instantiation,  and  simulation
refinements.

1. Five primary characteristics  of a  biological  mechanism – During execution, a  MM must
exhibit  these  primary  characteristics  of  a  biological  mechanism  [3].  1)  The  MM  is
responsible  for  a  virtual  phenomenon  that  mimics  the  biological  phenomenon  to  be
explained. 2) It has components (modules, entities, etc.) and activities that are 3) arranged
spatially  and  exhibit  structure,  localization,  orientation,  connectivity,  and
compartmentalization  that  are  (based  current  knowledge)  analogous  to  biological
counterparts.  4)  Activities  during  execution  have  temporal  aspects,  such  as  rate,  order,
duration, and frequency. 5) The MM has a context, which can include being in a series and/or
a hierarchy.

2. Biomimicry – Components and activities are biomimetic facilitate analogical reasoning.

3. Strong parsimony guideline  – When scaled,  measurements  of  selected features  match or
mimic prespecified phenomena to the extent needed to achieve face validation and specific
similarity criteria. Adhering to this guideline helps manage the number of equally plausible
MMs,  while  enabling  us  to  increase  complexity  incrementally.  It  also  facilitates
distinguishing a cause from an effect.

4. Emergence – Phenomena measured at a higher level of organization  arise mostly from local
component interactions and phenomena entanglement at a lower level of organization.

1.3 Virtual Experiments
The vision of VEs has been shown in the literature [4]; the following is a relevant summary. VEs

is a methodology analogous to wet-lab experiments; a test of an extant MM.  The approach is based
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on  analogical  reasoning  [5].  A  VE  contains  the  object  of  study,  context,  and
measurements/observations.  The  objects  of  study  are  the  BSAs.  The  context  is  any  surrounding
environment  or  external  influence  that  may  be  relevant.  Measurements  and  observations  can  be
obtained  to  compare  to  the  referent  biological  experiment.  Along  with  actually  performing
experiments, virtual experimentation also includes hypothesis formation. In this case, MMs are the
hypotheses.  A MM supported through virtual experimentation stands as a challengeable yet  tested
MM-based theory about abstract, plausible mechanism events that may have occurred during the wet-
lab  experiments.  To  strengthen  the  virtual-to-wet-lab  experiment  analogy,  virtual  features  and
phenomena are measured analogous to how corresponding wet lab measurements are (or might be)
made. Similarly to uncertainty and variability in wet lab experiments, measurements of MMs can
exhibit considerable variability as a consequence of Monte-Carlo (MC) sampling and probabilistic
specifications,  with  averages  over  several  MC trials.  We  envision  virtual  experimentation  as  an
essential supplement to traditional wet-lab experimentation, an essential part of scientific method. Wet
lab experiments  provide the data and knowledge for  MM formulation and validation, and virtual
experiments provide a platform to test hypotheses or explore scenarios unavailable in the wet lab.

Figure 2: Integrating wet-lab and virtual experiments. The two activities are analogous at every step. When
cycling through a  particular  scientific  protocol  (wet-lab or  virtual),  new insights  lead to  new questions and
hypotheses can lead one to switch between wet lab and virtual paths.

1.4 Iterative Refinement Protocol 
Scientific  Method  is  the  cornerstone  of  science.  This  methodology  involves  reasoning,

observation,  and  experimentation.  Scientific  Method  can  be  described  in  the  following  steps
(assuming a problem of interest or attribute in a natural system targeted for understanding):

1. Use reasoning (e.g. inductive, analogical, abductive) and current knowledge to develop a set
of plausible mechanistic hypotheses.

2. Test the predicted behavior of a hypothesis through experimentation using observations and
measurements.  Evidence is  developed through deductive reasoning and aggregated  using
induction.

3. The hypothesis is either rejected because it is falsified, or accepted:
a. Acceptance here is that the hypothesis has been supported, not that it is true.
b. If rejected, then choose another hypothesis and repeat from first step.
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Falsification is important because it is the only way to eliminate the space of hypotheses (i.e. a
member of the set).  A possible way of using abductive reasoning to rank the remaining accepted
hypotheses thereby furthering the selection is by Bayesian Inference (see Subsection 3.4).

The Iterative Refinement Protocol (IRP) simulates scientific method for falsifying, refining, and
validating explanatory MMs. Because of multisource uncertainties, to achieve validation it is essential
to conduct many narrowly focused virtual experiments to incrementally and systematically shrink the
constellation of plausible MM parameterizations. The IRP consists of the following steps:

1. Assemble  &  prioritize  a  diverse  set  of  wet  lab  observations  and  measurements  to  be
explained or simulated called Targeted Attributes (TAs), then update use cases. Choose a TA
for the current cycle. This choice is constrained on the available data and knowledge, and the
particular  use  case.  Formulate  a  MM  (or  a  set  of  a  variety  of  MMs),  determine  its
specification  (measurements  &  granularity).  Specify  the  process  of  comparison  to  the
referent and the requisite degree of similarity that must be achieved (Similarity Criteria (SC)
& TA measurements), which can range from qualitative (e.g. event X occurs before event Y;
temporal profiles have a sigmoidal shape) to quantitative (e.g. simulated measurements are
within 10% of wet lab measurements).

2. Implement and verify MM (either vary parameters or revise existing MM components and
modules) using parsimony, set up and run the simulations, record measurements. 

3. Selection and iteration: 
a. If MM is falsified (new knowledge), then return to step 2.
b. If MM accepted (achieve TAs & SC and thus a degree of validation), then return to step

1 and either increase SC stringency choose another TA.

The method is iterative in two ways, one over the set of plausible MMs for one TA, and one over a
set  of  TAs.  The  iterative  process  of  falsification-refinement-validation  ensures  that  the  MM  is
increasingly biomimetic yet parsimonious. MM credibility increases by increasing the strength and
variety of validation targets. At corresponding degrees of granularity, the MM during execution and
the actual biological mechanism may be strongly analogous within and across multiple levels.  That
analogy is only as strong as the weakest link in the networked MM during execution, and that depends
first  on  use  case-dependent  virtual-to-actual  mapping  similarities.  MMs  are  perpetual  works  in
progress, not finished products. We envision MMs being improved incrementally through multiple
future rounds of MM challenge and validation against an expanding set of TAs.

2 Example: Virtual Experiments on ALT release Model 
Mechanisms

This section describes a recent application of virtual experimentation to the understanding of drug
induced liver injury, and in particular the chemical biomarker ALT. The model biological system is the
release of ALT into the bloodstream following a toxic dose of the drug acetaminophen (APAP). The
first subsection describes a virtual mouse as the biomimetic software analog. The second subsection
describes the Model Mechanism implemented to explain the plasma ALT levels measured in real mice
(the Targeted Attribute). The third subsection discusses the results from virtual experimentation. The
fourth subsection discusses future work in this research project.
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2.1 Virtual Mouse
A virtual mouse or Mouse Analog is a concrete, biomimetic software system engineered to look

and behave like an real mouse (Fig. 1A-D). It comprises Mouse Body, Liver, and a space to contain
Dose  for  simulating intraperitoneal  dosing. Liver  is  the  number  of  Monte  Carlo-sampled  Lobule
variants per experiment and is strongly analogous to actual livers across several anatomical, lobular,
and cell biological characteristics. A Lobule comprises a directed acyclic graph with a particular SS
object at each graph node. Flow follows the directed graph. Graph nodes are organized into three
Layers, which map to conventional hepatic zones; with the number of SSs decreasing from Layer 1 to
3. That structure maps directly to the quasi-polyhedral nature of hepatic lobules. All SS dimensions
are Monte-Carlo sampled within constraints. Each SS comprised of multi-layered, cylindrical spaces.
Events, such as adsorption, diffusion, convection, and metabolism, occurring within a particular SS
are analogous to  microscopic referent  events  occurring within portions of  sinusoids  and adjacent
tissue. Entry and exit of chemical objects from Endothelial Cells and vHPCs is mediated by the Cell
(which is a software agent).  The virtual mouse has achieved qualitative and quantitative validation
targets through previous IRP cycles. 

Figure  3: Component organization and mechanism features. (A) A virtual Mouse is a concretized, coarse-
grain software analogy of a real mouse . (B) Shading illustrates hepatic zonation. (C) A Monte-Carlo specified
interconnected directed graph specifies flow paths for  chemical objects. (D) A multi-layered Sinusoid Segment
(SS) maps to a portion of hepatic tissue. One is placed at each graph node. A space within an SS contain Virtual
Hepatocytes (vHPCs), which contain a variety of objects  enabling cause-effect events within the Mechanism .
(E) Each of these events and activities (along with those in F and G) may occur each simulation cycle. Events in
the top series, labeled “Normal,” occur following therapeutic (non-toxic) and toxic doses of APAP. Those listed
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subsequently  contribute  to  simulated  APAP-induced  injury.  (F)  Many  events  have  location-dependent
probabilistic parameterizations. There is a direct mapping between the probability of an APAP Metabolism event
and average metabolic capacity at various lobular locations. Each vHPC uses values drawn from those gradients.
(G) The logic of the ALT release MM is shown (see text).

2.2 Model Mechanism of ALT release from Hepatocytes
For  all  experiments  we utilize  a  previously  parameterized,  validated  spatiotemporal  MM, the

parent MM (Fig. 3 E,F), that explains  the characteristic pattern of necrosis following a toxic APAP
dose in mice [6]. The new TA for this work is plasma ALT levels in mice. Therefore, we want to add
and implement hypothetical MMs for ALT release, guided by current information from the literature,
to the parent MM. Gamal et al. [7] described leakage of cytoplasmic material associated with APAP-
induced disruption of hepatocyte integrity and surface damage associated with blebbing. Therefore,
the working hypothesis is ALT is released by two separate processes, passive release through necrosis
and non-necrotic (i.e. damage) release. Because there is no strong wet lab evidence to the contrary, we
assumed that each hepatocyte, independent of lobular location, contains the same amount of ALT.
The parent MM in Fig. 3E includes a Necrotic state for a vHPC; therefore, instantiating a virtual
counterpart  to  ALT release caused by necrosis  was  straightforward.  When a vHPC transitions to
Necrotic, all remaining ALT is released and externalized (bottom, Fig. 3G).  Externalized ALT objects
follow the same stochastic movement rules as other chemical objects, including entering the Body. An
ALT-in-Mouse-Body is scaled directly to represent plasma ALT.  We name that entire sequence, from
Metabolism to ALT externalization, the Necrosis-Model.  For simplicity, ALT-in-Mouse-Body is not
removed, and accumulates in the Body. We sought parsimonious extensions of the parent MM that 1)
could  map  to  the  non-necrotic  ALT  release  process,  2)  would  operate  concurrently  with—but
independent of— Necrosis-Model,  and 3)  make ALT externalization a direct  function of Damage
Products.  The parent MM in Fig. 3E includes generation of two types of Damage Products, nonMD
(maps  to  all  types  of  non-mitochondrial  damage  products)  and  MitoD  (maps  to  all  types  of
mitochondria  related  damage  products)  within  each  vHPC.  We instantiated  three  versions  of  the
coarse grain Non-Necrotic ALT Release process illustrated in Fig. 3G by making ALT externalization
a direct function of the amount of Damage Products in each vHPC: nonMD, MitoD, or both.  When
MitoD (nonMD) is the cause of ALT Externalization, we name the MM Mito-D-Model (nonMD-
Model).  When both cause of ALT Externalization, we name the MM Dual-Model. Each simulation
cycle, each vHPC determines if its amount of designated Damage Products exceeds an ALT Leakage
Threshold value.  If so, that vHPC becomes Leakage-Triggered and initiates an ALT externalization
process. The vHPC specifies a Leakage Lag-Time by a pseudo-random draw from a uniform [Min,
Max) distribution.  When the Lag-Time duration is reached and the vHPC’s ALT counter value > 0,
the vHPC creates an ALT object, externalizes it, and decrements its ALT counter by 1. For Necrosis-
Model, when a Necrosis-Triggered vHPC transitions to Necrotic, and its ALT counter value > 0, the
vHPC creates ALT objects corresponding to the counter value and externalizes them with zero-time
delay.

2.3 Results from Virtual Experimentation
The objective of this work is to posit plausible cause-effect linkages between APAP disposition

and metabolism and concurrent measurements of ALT in plasma.  Until sublobular hepatocyte damage
and ALT release can be measured concurrently at multiple times within the same subject, it will be
infeasible to establish those linkages in vivo.  The alternative approach developed herein is to use
virtual  experiments  to  challenge  and  falsify  (or  not)  many  potentially  explanatory,  biomimetic
concretized MM-based hypotheses [1]. Early workflow results suggested that ALT externalization and
accumulation  in  Mouse  Body  as  a  consequence  of  Necrosis-Model  executions  could  not  scale
quantitatively to closely match the temporal patterns of plasma ALT, the validation targets. Results

Virtual Experimentation Complements Real-World Experimentation A. Smith et al.

85



from experiments to achieve stringent validation targets used MitoD-Model because we judged it to
be the more parsimonious of  the three.   We also observed no explanatory advantage when using
nonMD-Model or Dual-Model.

  

Figure 4: The gray area is the validation target range (left axis), which is based on mouse data from the four
indicated reports. The SC for an acceptable ALT release MM is that it generates ALT-in-Mouse-Body profiles
that, when scaled (right axis), fall within the target range. The four labeled profiles were generated by the MMs
described in the text.

2.4 Falsification using another Targeted Attribute
The  MM with  ALT  release  from  both  necrotic  and  non-necrotic  hepatocytes  caused  by

mitochondrial damage satisfied the similarity criteria for plasma ALT levels measured from real mice.
In following the IRP, the next step to validate or falsify this MM by testing against another TA. One
such measurement is protein adducts caused by APAP metabolism.  If a normal process is damaged
during APAP-induced injury, its selectivity may be eroded leading to concomitant externalization of
other macromolecules, including ALT.  Consistent with that scenario, McGill et al. [8] reported that,
following a low toxic APAP dose (no necrosis), APAP-protein adducts are externalized to blood prior
to  ALT  elevations.  These  adducts  map  to  the  damage  products  produced  by  hepatotoxicity
mechanisms in the virtual mouse. Measurements of these adducts over time can be used as TA for
further cycles of the IRP.

3 Experiment Agent or Automated Experimentation
This section discusses future advances that we believe will help strengthen synergies between wet-

lab and virtual experimentation, thus expediting research efforts. Performing many cycles of the IRP
can be  tedious  and  time consuming;  automation  would  help.  Therefore,  we propose  to  design  a
software agent to perform the experiments, or an artificially intelligent “scientist.” The first subsection
discusses why humans are still needed for hypothesis formulation. The second subsection discusses
possibly using machine learning to search the space of MMs and the automation of the IRP. The third
subsection  discusses  ways  to  create  SCs.  Finally,  the  fourth  subsection  discusses  using  Bayesian
Inference to select and rank MMs.
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3.1 Humans for hypothesis formulation
Hypothesis formulation is largely an abductive reasoning process. Because of this, humans are still

better than AI. However, along with expert opinion, AI could be used to mine databases so that current
knowledge and data used to form hypotheses could more easily be obtained and analyzed [9]. In our
lab, we are considering setting up a database of possible TAs and virtual experimentation results.
Along with hypothesis formulation, this database could be used to gather data and develop TAs for
VE. This is also a time-intensive, manual process because there are many wet lab experiments with
slightly different contexts and considerable uncertainty among a set of similar experiments.

3.2 Automation of the IRP and AI for searching
Once a process can be written down as a series of steps then either full or partial automation can

be conceived. The IRP from above can be simplified by the following steps:

1. Hypothesis formulation, as a MM, and implementation (also verification) 
2. Vary or search MM, and test against TA with SC.
3. Reject or accept and rank MMs

As mentioned above, step 1 can be partially automated. However,  step 2 can potentially be fully
automated similar to model fitting. We currently have a random search method in which a range of
values or set of specifications are inputted for relevant parameters and a random selection is made.
For large parameter spaces this becomes unwieldy quickly; therefore, information from the referent or
parameters would be useful to shrink the space of the search. There is current work in the lab to
search parameter  space for  regions where the output  behavior  (i.e.  the one compared to the TA)
changes  quickly  or  nonlinearly,  and  for  regions  of  relatively  little  change  (i.e.  robustness).  This
exploration, similar to a sensitivity analysis, can be automated.

3.3 Jensen-Shannon Divergence as a Similarity Criterion for Testing
The estimation of similarity between any 2 traces/outputs from a MM can be broadly divided into

2 types of approach: theoretically justified versus ad hoc. In [10] an attempt was made to justify the
calculation of similarity by various distance measures.  To fully justify such methods theoretically
would require the formulation of MM behavior as a metrizable space, which can be prohibitively
expensive  for  exploratory  models  like  ours.  Parametric  statistical  comparisons  also require  some
justification. For example, comparing means and standard deviations assumes Gaussian distributions,
which is not guaranteed by our MM, which composes pseudo-randomly sampled distributions, most
of which are uniform, but some of which are not. The properties of the Jensen-Shannon Divergence
(JSD) can be used agnostically to compare any 2 time series, when normalized and interpreted as a
probability density function, to produce an aggregate value. Along with other estimates of similarity,
JSD can provide a very coarse ad hoc, but fast and automatic, SC. See [11] for an overview.

3.4 Model Selection by Bayesian Inference 

In complex situations, selecting a member from a set of accepted MMs is not easy because of
uncertainty. Model selection using Bayesian Inference has been applied to statistical models [12], but
not to MMs. A MM has a certain probability for being plausible a priori based on current knowledge,
logic, etc. After VE, if the MM is validated, then that probability increases. Most manually varied
parameters fail to satisfy the SC, but some do, and within this set some do "better" than others. Let M
= one MM out of the set {MM}, Y = validated MM output from {Y}, D = TA. The probabilities are
the following: 1) P(M|D), probability of the MM given the TA, 2) P(M|Y), probability of the MM
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given the MM output, 3) P(D), probability of the TA, 4) P(Y|M), probability of the MM output given
the MM, 5) P(Y), probability of the MM output, and 6) P(MM), probability of the MM. The goal is to
update or infer P(M|D) with information from matching Y to the TA using the SC every IRP cycle
using Bayes’ Rule, P(M|Y) * P(Y) = P(Y|M) * P(M), giving a certain likelihood that can be used to
rank the set of models. In addition, we would like to have a probability suggesting the likelihood that
a  particular  MM  is  adequately  explanatory.  As  more  information  from  successive  experiments
accumulates, we can update this probability.
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