
EPiC Series in Computer Science

Volume 37, 2015, Pages 32–39

Symbolic and Numerical Methods for Reachabil-
ity Analysis, 1st International Workshop, SNR 2015

An Algorithmic Approach to Stability Verification of

Hybrid Systems: A Summary

Pavithra Prabhakar and Miriam Garćıa Soto
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Abstract

This paper summarizes results related to a novel algorithmic approach for verifying stability of

hybrid systems. The traditional approach based on Lyapunov function search suffers from several

disadvantages — it relies on the user expertise to obtain good templates for the Lyapunov function;

further, an unsuccessful attempt at instantiating the templates provides no insights into the choice

of better templates. To overcome these difficulties, the algorithmic approach relies on an abstraction

refinement framework which systematically searches for a proof and provides insights to the user in the

event of a failure to prove stability. We summarize the new foundations, techniques and software tools

that we have developed for the algorithmic approach to stability verification.

1 Introduction

Stability is a fundamental property in control system design, which captures the notion that
small perturbations in the initial state of the system result in only small perturbations in
the behaviors starting from than point. Traditional methods in control theory for stability
analysis of dynamical systems consist in exhibiting a certificate of stability in the form of
a Lyapunov function — a continuously differentiable, positive definite function such that the
value of the function along any solution of the system is decreasing. This idea is extended to the
case of hybrid systems — systems exhibiting mixed discrete continuous behaviors — through
the notions of common Lyapunov functions and multiple Lyapunov functions. In terms of
automation, the Lyapunov function search is carried out by fixing a template and encoding
the conditions of the Lyapunov function in some constraint solving formalism such as Linear
Matrix Inequalities (LMIs) or Sum-of-Squares (SOS) optimization. The main difficulty with
this approach is determining the right template for the candidate Lyapunov function. Further,
when the constraint solvers fails to obtain parameters for the template, they do not provide any
insights into the reason for instability or for the choice of better templates for subsequent trials.
Motivated by these issues, in this line of work, we investigate an algorithmic approach based
on abstraction refinement, which systematically explore the search space, and returns counter-
examples which indicate potential reasons for instability and guide the choice of subsequent
abstractions.
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Figure 1: Phase portraits and sample executions

2 Hybrid system

We present a semantic model for representing the mixed discrete-continuous behaviors of a
hybrid system [1, 5]. A hybrid system H is a tuple (Q,X,Σ,∆), where:

• Q is a finite set of control locations;

• X = Rn, for some n, is the continuous state space; Q×X is the state-space;

• Σ ⊆ Trans(Q,X) is a set of transitions, where Trans(Q,X) = (Q×X)× (Q×X); and

• ∆ ⊆ Traj(Q,X) is a set of trajectories, where Traj(Q,X) is the set of all functions τ :
I → Q × X, where I is either a finite [0, T ] or infinite [0,∞) time interval, such that
the function restricted to the discrete space, Q, is finitely varying and restricted to the
continuous space, is a continuous function.

Σ captures the switching conditions and resets during the mode switch and ∆ captures
the solutions of differential equations or inclusions modelling the continuous dynamics. Given
a state s = (q, x) we use the subscript X to denote the continuous part of the state, that
is, sX = x. An execution of a hybrid system H is a sequence of transitions and trajectories
σ : D → Σ∪∆, where D is either {0, . . . , n} for some n or N. We denote the set of all executions
of the system by Exec(H).

Example 1. In Figure 1, we depict an example of a particular class of hybrid systems, namely,
linear switched systems. The continuous evolution of this system is determined by linear dy-
namical systems. Let us consider two linear dynamical systems defined by matrices A and B.
The phase portraits for both systems are shown in Figure 1(a) and Figure 1(b) respectively. We
define two linear switched systems M1 and M2, by switching between these linear dynamical
systems. M1 follows the dynamics determined by matrix B in the first and third quadrants
while follows A in the other two quadrants. M2 follows A in the first and third quadrants and
follows B in the second and fourth quadrants. Sample executions for both systems are shown
in Figure 1(c) and Figure 1(d). These executions consists of trajectories, which capture the
evolution of the system in a particular quadrant, and switching transitions, that occur at the
boundaries of the quadrants.
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3 Lyapunov and Asymptotic Stability

In this section, we define two classical notions of stability for hybrid systems, namely, Lyapunov
and asymptotic stability. We consider stability with respect to an equilibrium point. We
consider, for simplicity, the equilibrium point to be the origin, which is denoted as 0H. Lyapunov
stability captures the notion that small perturbations in the initial state of the system result
in only small perturbations of the behaviors starting from that point. Asymptotic stability
requires convergence in addition to Lyapunov stability.

Definition 1. A set of executions S ⊆ Exec(H) is said to be Lyapunov stable if for every
ε > 0, there exists a δ > 0 such that for every execution σ ∈ S with σ(0)(0)X ∈ Bδ(0H),
σ(i)(t)X ∈ Bε(0H) for all i, t. A hybrid system H is said to be Lyapunov stable, if Exec(H) is
Lyapunov stable.

An execution σ of H is said to converge to 0, denoted Conv(σ, 0H), if for every ε > 0, there
exists a time T ∈ R≥0 such that σ(i)(t)X ∈ Bε(0H) for every t ≥ T .

Definition 2. A set of executions S ⊆ Exec(H) is said to be asymptotically stable if it is Lya-
punov stable and there exists a δ > 0 such that every σ ∈ S with σ(0)(0)X ∈ Bδ(0H), Conv(σ, 0H)
holds. A hybrid system H is said to be asymptotically stable if Exec(H) is asymptotically stable.

Example 2. We observe in Figure 1(c) that executions from system M1 converge to the origin,
which implies asymptotic stability. In the case of system M2, the execution of Figure 1(d)
diverges, hence we know the system is unstable.

4 The Algorithmic Approach

Our broad approach is to develop an abstraction refinement framework for stability verification.
In this section, we define the foundations and the algorithmic approach based on abstractions
for stability analysis.

4.1 Preorders and equivalences

Simulation and bisimulation relations are the classical notions of pre-order and equivalence on
systems which preserve several discrete-time properties such as safety and those expressible
in linear and branching time logics. However, it turns out that they do not preserve stabil-
ity [8]. Hence, a stronger notion that imposes certain continuity constraints on the relations —
continuous simulations and bisimulations — is proposed to enforce stability preservation.

Theorem 4.1. [8, 12] Let R be a continuous simulation from a hybrid system H1 to a hybrid
system H2. Then:

• H2 is Lyapunov stable implies H1 is Lyapunov stable.

• H2 is asymptotically stable implies H1 is asymptotically stable.

The above results suggest that the standard constructions of abstractions and minimizations
for analysis of properties such as safety which rely on simulations and bisimulations may not
carry over directly for stability analysis. Next, we present a “quantitative” version of the
standard predicate abstraction for stability analysis.
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4.2 Quantitative Predicate Abstraction (QPA)

In the context of safety verification, a finite abstraction of a concrete system is constructed
from a partition of the state space of the system into a finite number of regions. The nodes in
the finite abstraction correspond to the regions, and the edges between two nodes capture the
existence of an execution in the concrete system starting from a state in the region corresponding
to the first node to a state in the region corresponding to the second node. This defines an
abstract system, a finite graph, which over-approximates the behaviors of the concrete system,
and hence, safety of the abstract system implies the safety of the concrete system.

However, for stability verification, it does not suffice to merely construct a system which
over-approximates the behaviors of the concrete system. We need to capture some quantitative
information about the evolution of the distance of the states to the origin along an execution.
Hence, we annotate the finite graph with weights. More precisely, we interpret the nodes in
the abstract graph as regions, an edge in the graph as the existence of a potential execution
from one region to other evolving through a third region, and the weights as the scaling in
the distance to the origin of the execution as it traverses from the first region to the second
one. The crux of this construction lies in computing a predicate ReachRelP1,P2(s1, s2), where
P1 and P2 are regions in the state-space partition. The predicate holds for a pair of states
(s1, s2) if s1 ∈ P1, s2 ∈ P2 and there exists a region P in the partition and an execution of
the system from s1 to s2 which always remains in P except for the initial and the final times.
If ReachRelP1,P2

evaluates to true for some (s1, s2), then there is an edge from P1 to P2. The

weight on the edge is an upper bound on the “scaling”, that is, the ratio ||s2||||s1|| , over all (s1, s2)

which satisfy ReachRelP1,P2 . In addition, we annotate a node with the label “conv” if all the
executions which eventually remain in the region converge to the origin.

Remark 1. In practice, to succeed in proving stability, we may need to prune the graph to
remove redundant information. For instance, [9, 10] consider only the facets of the regions of
the partition as nodes.

Example 3. We illustrate the QPA construction on the linear switched systems in Example 1,
M1 andM2. We present a simple construction of the weighted graph. The nodes corresponding
to the quadrants and origin are not considered because they add redundant information on
executions of the system.

Figure 2 shows the finite weighted graphs G1 and G2, corresponding to the systems M1 and
M2, respectively. The construction of G1 and G2 is performed by partitioning the planar space
into four quadrants, and choosing as the nodes the boundaries to the quadrants — the positive
x axis f1, the negative x axis f3, the positive y axis f2 and the negative y axis f4. We observe
in Figure 1(c) and Figure 1(d) that an execution evolves in the clockwise direction reflected by
the edge directions. The weights define an upper bound on the scalings, for instance, a weight
0.52 on the edge f4f1 indicates that the execution starting at distance d on the positive y axis,
when it crosses the first quadrant and reaches the positive x axis is at most at distance 0.52d
from the origin.

4.3 Model-Checking Algorithm and Soundness of QPA

Next, we present the model-checking algorithm which is run on the abstract weighted graph,
and provide insights into the correctness of the same. We say that a hybrid system H is well-
behaved with respect to a partition of the state-space H if every trajectory of H with finite

35



An Algorithmic Approach to Stability Verification of Hybrid Systems P. Prabhakar and M. Garćıa Soto
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(b) Weighted graph G2

Figure 2: Quantitative Abstractions

time domain is finitely varying with respect to the partition, that is, enters and exist any region
only finitely many time.

Theorem 4.2. [12] Let G be a quantitative abstraction of a hybrid system H with respect to a
partition P , and let H be well-behaved with respect to P . Consider the following conditions:

G1 There is no edge e in G with infinite weight.

G2 The product of the weights on every simple cycle π of G is less than or equal to 1.

G3 Every node in G is labelled by “conv”.

G4 The product of the weights on every simple cycle π of G is strictly less than 1.

Then:

• H is Lyapunov stable if conditions G1 and G2 hold; and

• H is asymptotically stable if conditions G3 and G4 hold.

Every execution of the hybrid system corresponds to a path in the weighted graph. If the
execution switches infinitely between the regions (note that an execution is allowed to switch
infinitely between the regions, but not a trajectory), then it corresponds to an infinite path
in the graph. The product of the weights on prefixes of this path provide an upper bound
on the scaling associated with the corresponding prefix of the execution. Note that any finite
path can be decomposed into a simple path and a set of simple cycles, hence, if condition G2
holds the weight of the path is upper bounded by the weight of any simple path in the graph.
Therefore, there is global bound on the scaling associated with any execution which switches
infinitely between the regions. The other possibility is for an execution to eventually enter a
region and remain there for ever. Again, condition G1, ensures that the scaling associated with
the execution is globally bounded. Hence, if G1 and G2 hold, given any ε, by choosing δ < ε/b,
where b is this global bound, we can ensure that all executions starting in the δ ball around the
origin remain in an ε neighborhood of the origin, thereby ensuring Lyapunov stability.

In the case of asymptotic stability, for executions which eventually enter and remain in
a region, condition G3 ensures that they converge to the origin. Note that since the weight
associated with the simple cycles is < 1 − γ for some γ > 0, taking a cycle once takes the
execution closer to the origin by a factor of 1− γ. This observation can be exploited to prove
that the executions switching between the regions infinitely often eventually converge to the
origin, since they follow the simple cycles infinitely often.
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Remark 2. One of the main highlights of the quantitative abstraction based stability analysis
is that the method returns a counter-example in the event of a failure, indicating a potential
reason for instability. For instance, a cycle of weight greater than one in the weighted graph
expresses the possible existence of an infinite diverging execution along this cycle.

A method for stability verification of hybrid systems based on graph decomposition and
analysis of properties along cycles is presented in [7], however, while [7] is based on Lyapunov
functions, our method considers reachability relation computation as the building block.

4.4 Connecting Quantitative Predicate Abstraction and Continuous
Simulations

A formal connection between the concrete hybrid system and the abstract weighted graph can
be established by interpreting the latter as a one dimensional hybrid system. More precisely,
we construct two one dimensional hybrid systems corresponding to a weighted graph G, namely,
HG and Hconv

G . HG corresponds to a set of executions σ of a one dimensional system, which
can be split into a finite or infinite sequence σ0σ1 . . . such that there is a path in the graph
π = π0π1 . . . of the same length and the scaling associated with σi is bounded by the weight
on the edge πi. Hconv

G corresponds to executions of HG which in addition satisfy the “conv”
condition on the final region if the path associated with it is finite.

Theorem 4.3. [12]

• HG continuously simulates H;

• Hconv
G continuously simulates H.

Therefore, from Theorem 4.1, the Lyapunov stability of HG implies the Lyapunov stability
of H and the asymptotic stability of Hconv

G implies the asymptotic stability of H. Further,
conditions G1 and G2 capture the Lyapunov stability of HG , and conditions G3 and G4 capture
the asymptotic stability of Hconv

G .

Remark 3. More importantly, Theorem 4.3 provides a formal foundation for the quantitative
predicate abstraction. As shown in [12], one can formally state that adding new predicates
provides an abstraction closer to the original system in the ordering imposed by continuous
simulations on the weighted graphs.

4.5 Computing the Weighted Graph

The main computational challenge with the quantitative predicate abstraction is the compu-
tation of the predicate ReachRelR1,R2 and solving the corresponding optimization problem for
computing the weight on the edge. The other challenge is the computation of the label “conv”.
In this section, we consider two classes of hybrid systems — those in which the invariants and
guards are defined by linear constraints, and the dynamics are defined by polyhedral inclusions
ẋ ∈ P , referred to as polyhedral hybrid systems (PHA), or linear dynamics ẋ = Ax, referred to
as linear hybrid systems (LHA). We discuss how to compute the QPA for these systems.
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4.5.1 Polyhedral Hybrid Systems

A solution of ẋ ∈ P is a trajectory which follows some vector in P . Note that such a solution
is finitely varying with respect to a polyhedral partition, since, it never visit a region it has
exited. Further, if the execution does not change modes between the regions R1 and R2, then the
predicate ReachRelR1,R2

(s1, s2) is equivalent to s1 ∈ R1, s2 ∈ R2,∃t,∃v ∈ P, s2 = s1 + vt. Note
that si ∈ Ri is equivalent to si satisfying the linear constraints associated with Ri; similarly,
the last constraint is equivalent to (s2 − s1)/t satisfying the linear constraints associated with
P . Hence, the predicate ReachRel can be expressed using an existentially quantified first-order
logic formula with only conjunctions. In general, the execution from R1 to R2 may change
modes an unbounded number of times, especially, when the hybrid system graph has a cycle;
however, we show that for the purpose of capturing the ReachRel it suffices to consider certain
“executions” with bounded number of mode switches. Hence, we can express ReachRel as an
SMT formula over (R, <,+). For further details, see [9, 10].

In terms of computing the label “conv”, one can computationally determine whether there
exists an execution which diverges in a particular region R — this happens exactly when there
is some vector in the polyhedron P corresponding to some location whose invariant contains
R, that belongs to the cone of R at the origin. In fact, we can show that the weighted graph
construction exactly characterizes Lyapunov and asymptotic stability in the case of planar
systems; hence, we have decidability [13].

4.5.2 Linear Hybrid Systems

For linear dynamics, it is not possible to compute the ReachRel exactly. There is a lot of work
on constructing over-approximations of ReachRel, and bounded error approximations can be
obtained provided there is a bound on the time the executions spend in a region. Tools such as
SpaceEx [3] can be used for this purpose. However, when there is no bound on the time spent,
or in the presence of mode switches, these techniques and tools do not suffice; they do not reach
a fixpoint. Hence, we are currently focusing on hybridization techniques for stability analysis,
which provide bounds on the scalings rather than bounds on the reachable set in a finite time
horizon.

4.6 AVERIST: Algorithmic VERIfier for STability

AVERIST [11] is a software tool for stability analysis of hybrid systems. It implements the
quantitative predicate abstraction presented in this paper for the class of polyhedral switched
systems and the stability analysis based on the weighted graph. It has been implemented in
Python. It uses Parma Polyhedra Library (PPL) [2] to manipulate polyhedral sets. The GNU
Linear Programming Kit GLPK [4] solver is the linear optimization tool used for computing
the weights. The NetworkX Python package [6] is used to define and analyse graphs. Our
experiments with polyhedral hybrid systems indicate that the approach is scalable. More im-
portantly, it returns a counter-example which can be examined manually or automatically to
refine the abstraction.

5 Conclusions

In this paper, we summarized the algorithmic approach for stability verification that we have
developed. There are several interesting future directions. We are currently investigating
methods to deal with computational issues associated with extending the results to hybrid
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systems with linear and non-linear dynamics. We are also exploring compositional techniques
for stability analysis.
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