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Abstract. Tertiary structures of molecules represent high-dimensional data contain-
ing spatial information of hundreds (even thousands) of atoms. Unsupervised learning
techniques can be applied to such spatial data to uncover hidden organizations that
can be subjected to further evaluation. Such techniques have already been employed
in a number of relevant applications e.g., tracking the conformational changes in a
set of biomolecular structures, detecting biologically active tertiary structures from
computed structures of proteins, analyzing molecular dynamics simulation of pep-
tides, and so on. This paper presents a comprehensive review of clustering techniques
for tertiary (3D) molecular structure data focusing on protein molecules. In fact, the
article systematically organizes as well as analyzes the existing approaches in terms of
data representation, methodology, proximity measure, and evaluation metric. Besides,
it highlights key open challenges and proposes future research directions to advance
this domain.

Keywords: Clustering - Protein Tertiary Structure - Proximity Measure - Unsuper-
vised Learning

1 Introduction

The tertiary structures of molecules represent the three-dimensional arrangement of atoms,
which are highly complex and dynamic, particularly in molecules like proteins they take on
different configurations under physiological conditions. Understanding their dynamic behav-
ior requires organizing these structures into structural states, which can be addressed using
unsupervised learning, specifically clustering. Proteins exhibit fast transitions within the
same state and slower transitions between different states, making clustering a suitable tool
to summarize their behavior and identify states relevant to cellular interactions. Clustering,
as an optimization problem, lacks universal evaluation metrics, with methods differing based
on data representation, proximity measures, and optimization processes. The fundamental
steps include selecting appropriate data representation, proximity measures, techniques, and
evaluation metrics. Applications in computational biology range from capturing conforma-
tional changes in protein structures [13] to detecting macrostates in molecular dynamics
simulations [29]. This article reviews and categorizes the existing research, highlighting find-
ings and limitations in clustering methods for protein tertiary structures.

The rest of this paper is organized as follows. Firstly, the key concepts are briefly sum-
marized in Section 2. Section 3 presents an area taxonomy that has been identified and then
summarizes existing methods along the identified taxonomy. The article concludes with a
summary of future directions (in Section 4) and concluding remarks in Section 5.
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2 Preliminaries

2.1 Representation of Protein Molecular Structures

Cartesian Coordinates Tertiary structures of protein molecules are generally represented
as ordered sequences of 3D coordinates for their constituent amino acids. For a molecule
with NV atoms, a naive representation places it as a point S in a 3N-dimensional space with
S = (x1,Y1,21,---, TN, YN, 2N ). Structural data, such as that stored in the Protein Data
Bank (PDB) [11], includes lists of atoms along with their 3D spatial coordinates. To reduce
dimensionality, representations often focus on specific subsets of atoms, such as using only
the alpha-carbon (C,) atoms or the backbone atoms (Cy, C, N, and O).

Fig. 1. Backbone Dihedral Angles

Dihedral Angles Instead of Cartesian coordinates, one can use the backbone dihedral /torsion
angles (¢ and ¢ angles per amino acid) as features. A dihedral angle is the angle between
two planes; the plane formed by the atoms ¢ — 2,7 — 1,7 and the plane formed by the atoms
t— 1,49+ 1 where i — 2,4 — 1,4, + 1 are four sequentially bonded atoms (Figure 1). The
backbone of a protein (which links the backbone atoms) has 3 different torsion angles- phi
(¢): rotation around N-C, bond in an amino acid, psi (¢): rotation around C,—C bond in
an amino acid, omega (w): rotation around C-N bond linking two consecutive amino acids.

Shape-based features Ultrafast Shape Recognition (USR) metrics are used to characterize
the 3D shapes of ligands and can be applied to featurize tertiary molecular structures. These
metrics rely on moments of the distance distribution of atoms to compare molecular shapes.
USR identifies four reference points from a structure: the molecular centroid (ctd), the
closest atom to the centroid (cst), the farthest atom from the centroid (fct), and the farthest
atom from fct (ftf). The geometry and shape are captured through the mean, variance, and
skewness of the distance distributions for these points, resulting in a set of 12 features per
structure [45].

Contact Map A contact map is a binary two-dimensional L x L square matrix, M that
represents the distance between all possible residue pairs of a tertiary structure of a protein
(L denotes the residue length). The element M (4, 7) is 1 if the distance between the residues
7 and j is less than a predefined threshold and 0 otherwise.

Furthermore, dimensionality reduction techniques are often employed to simplify the
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representation of molecular structures. Principal Component Analysis (PCA) is utilized [8]
to sample protein structure coordinates by capturing correlations among atomic coordinates,
particularly in low-energy regions, and to represent dihedral angle distributions [41]. Isomet-
ric feature mapping (ISOMAP) is applied to analyze protein trajectories, while Time-lagged
Independent Component Analysis (TICA) is used for molecular dynamics data to identify
coordinates with maximal auto-correlation over a specific lag time [25], in contrast to PCA’s
focus on maximal variance.

2.2 Proximity/Distance Measures

To compare the tertiary structures of proteins, a number of similarity /dissimilarity measures
are available. Among them, the most prominent ones include:

Root mean square deviation (RMSD): The RMSD between pairs of equivalent atoms is
widely used to capture the degree of similarity between two optimally superimposed tertiary

structures of a protein. RMSD = \/ ~ SV | 8% — S |2 where N is the number of atoms,
SY and Sp represent the coordinate vectors for i-th atom of the structure A and structure
B respectively (after optimal superimposition). One can consider a number of settings to

compute RMSD such as: only over C, atoms [34] or backbone atoms [13,35] or over all
atomic coordinates (¢cRMSD [24]) of the structures.

Global Distance Test-Total Score (GDT-TS): It determines the similarity between
two structures with their corresponding superimposed residues. GDT — TS(S4,Sg) =
% where P, denotes the percentage of residues from structure S,4 to be superim-
posed with the corresponding residues from structure Sp having chosen distance threshold,
t(t € {1,2,4,8}). GDT-TS value ranges from 0 to 1. The larger score indicates better
similarity.

Template-Modeling (TM) Score: TM-Score determines the global structural similar-

ity of a structure with respect to the reference structure in terms of the distances of each

pair of residues. TM — Score = max [% DO ﬁ} where N denotes the number of
do

residues, d; represents the distance of the i-th pair of residues after alignment. The range of

TM-Score values is (0, 1], with a higher value indicating better similarity.

Besides, metrics like contact map overlap(CMO) [24], Tanimoto coefficient (7¢) [21], Local-
Global Alignment (LGA) Score [46], and C-score [47] have also been used as proximity
measures in different occasions.

3 Systematic Review

Taxonomy-based Survey

Taxonomy provides a systematic way to organize the methods and tools developed in a
particular area and most importantly it helps to identify the research gaps in the area. How-
ever, no such effort has been found in the literature for unsupervised learning of molecular
structures of protein molecules. Hence an attempt is made here based on the comprehension
of the research landscape in this domain. Table 1 represents an overview of the methods
categorized under four major heads: representation, proximity measure/ distance function
used, the types of clustering techniques employed, and the evaluation metrics applied.
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Table 1. An Overview of the Available Methods that Employ Unsupervised Learning of Protein
Tertiary Structures

Based on Categories Instances from Literature
Cartesian Coordinates [Cgq atoms: Calibur [34], ONION [33],
Representation SCUD [31]; Backbone atoms: Boutonnet et
al. [13]; All-atoms: ClusCo [24]
Dihedral Angles TCON [40]
Shape-based Zaman et al. [45], Kabir et al. [29]
Contact Map Han et al. [22]
Proximity Similarity TM-Score: ONION [33], Calibur [34]
’ Distance RMSD: SCAR [12], Durandal [9], SCUD [31],
SPICKER [48]
Partitional Pleiades [23], SCAR [12], ONION [33],
Clustering Type ClusCo [24]

: Hierarchical HCPM [20], Estrada et al. [17], bcl — Cluster [7]
Graph-based Akhter et al. [4], Kabir et al. [28], Zhou et al. [49]
Factorization-based NMF-DS [27], NMF-MAD and NMF-Rank [2],

NTF-REL [26]
Evaluation Application-specific SC’AR [12], SCUD [31], ONION [33],
Calibur [34]
Application-agnostic Li et al. [32], Zhou et al. [49], ClusPro [15]

3.1 Representation

Tertiary structures of proteins are three-dimensional objects, they have shape and occupy
volume in space as they are composed of atoms occupying positions. The atoms are not
free-floating and connect to each other with links/bonds. Hence the obvious key question
one would have to answer first is that if we want to cluster three-dimensional objects, how
do we represent them? What do we encode that will allow us to recognize any inherent
organization?

The most popular and intuitive way is to consider the structures as ordered sequences
of 3D coordinates and represent them using Cartesian coordinates. One has to make a de-
cision regarding whether to keep all of the atoms (all-atoms [24]) or a specific type of atom
(Cq) [31,33,34] or a group of atoms (backbone atoms [13]). While suitable for classic distance
metrics like Euclidean distance, this representation is extremely high-dimensional, leading to
issues such as the curse of dimensionality and reduced performance for clustering algorithms.

On the other hand, the changes in molecular structures can be considered as the out-
come of rotations around bonds that connect atoms. In fact, the comparison of structures
(at room temperature) reveals that changes in angles are due to some specific ones (dihe-
dral angles) [40]. Dihedral angle-based representation ensures dimensionality reduction by
a factor of 7 over the Cartesian coordinates [36]. The most intuitive distance function for
this representation would be L1-norm. However, it is necessary to go beyond the L1-norm to
design more meaningful distance functions as all angles are not equally important. Because
if we interpret angles as rotations, changes in angles at the beginning of the chain of atoms
bring a larger impact (in terms of the swept volume in 3D) than changes in angles at the
end of the chain.

Besides, changes in atomic positions or angles ultimately result in changes to the shape
of the structure. And it is possible to come up with the coarse representation of shape. USR
metrics summarize the distance distribution of atoms from four reference points via mean,
variance, and skewness [45]. This mechanism ensures dimensionality reduction by a good
margin but fails to capture subtle structural changes.

Contact maps capture the internal geometry of the structure and bring forth a more
reduced representation of protein tertiary structures (in comparison to their entire three-
dimensional atomic coordinates) and are also invariant to rotations and translations. More-
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over, a contact map can also be represented by an ordered graph [22]. However, this repre-
sentation throws out subtle information regarding structures.

3.2 Proximity/Distance Measure

Proximity measures or distance functions (for comparing protein tertiary structures) are
primarily focused on Cartesian coordinate-based representation. The most popular and in-
tuitive distance function is RMSD which is a variant of Euclidean distance. The RMSD
value is dependent on the size of the molecule (number of atoms). The computation is
time-demanding as it requires that the structures be aligned first to remove differences due
to rigid-body motions (whole-body translation and whole-body rotation in 3D). Similarity
metric GDT-TS aims to address the dependency of RMSD on the number of atoms. It first
finds the subsets of atoms within certain thresholds of RMSD (1A, 24, 4A, SA) and then
reports an average of these percentages over the thresholds. GDT-TS is more accurate than
RMSD at capturing structural differences but it is also computationally demanding. On the
other hand, TM-score weights shorter distances between corresponding atoms more strongly
than longer distances. It ensures more sensitivity to global topology rather than local struc-
ture deviations. The magnitude of the TM-score is length-independent for random structure
pairs.

3.3 Clustering Techniques

Clustering algorithms identify groups of observations that are more similar to each other
than to the observations of other groups. For the clustering of protein tertiary structures,
the strategy followed by most systems (e.g., ROSETTA [39], I-TASSER [44], SPICKER [48],
SCUD [31], Calibur [34]) can be summarized by the following steps:

1. For a given set of structures, choose a threshold, 5 for the proximity measure

2. The structure with the most neighbors within distance t;, from it is extracted and
is reported as the structure with the highest rank (choose arbitrarily in case of ties)

3. This structure and all of its neighbors form the first cluster and are removed

4. Repeat steps (3) and (4) until no further clusters are found

Techniques for clustering protein tertiary structure fall into four major branches: partition-
ing methods, hierarchical methods, graph-based methods, and factorization-based methods.
Partitional clustering divides the set of observations into non-overlapping subsets (clusters)
in such a way that each observation is in exactly one cluster. Hierarchical methods start
with each observation forming a separate cluster and eventually construct a set of nested
clusters that can be represented by a tree.

Partition-based Algorithms: k-means is the most popular partition-based clustering
method. While dealing with the structure data, k-means tries to solve the following prob-
lem: Given n structures Si, .52, S3, ....., Sn, k-means attempts to group the structures into k
clusters (A1, Ag, As, ....., Ay) to optimize the objective function of k-means. In fact, k-means

is considered as the baseline in [3,45].

Pleiades is a k-means-based method for clustering protein structures that uses a 31-dimensional
tuned Gauss integral (GIT) vector representation of the structures to approximate the
RMSD. The Euclidean distance (having a fair correlation with the RMSD) measures the
proximity between two structures [23]. While faster than RMSD-based k-means, GIT repre-
sentation may map different structures to the same vector. RMSD-based k-means, though
slower, produce more accurate clusters, showing that k-means can offset GIT’s limitations.
Pleiades’ key advantage is its computational speed [23].
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SCAR is a k-means-inspired clustering method that uses Relative RMSD (RRMSD) as a
universal proximity measure and structure packing number for adaptive local cluster cutoff
that considers the variability in the cluster’s internal dispersion. It includes a refinement step
with centroid realignment via singular value decomposition (SVD). Overlapping clusters are
resolved by removing the one with the lower packing density (a measure of cluster cohesion).
RRMSD follows a universal distribution (mean: 1.0, standard deviation: 0.09), enabling ro-
bust clustering, while centroids represent global consensus topology. The method minimizes
inter-cluster correlation by ensuring centroid distances exceed individual cluster dispersion.
Adjustable cutoffs enhance flexibility, and packing density captures cluster cohesion and
dispersion errors [12].

ONION operates similarly to k-means, with a slightly modified objective function minimiz-
ing RMSD between structures and optimal centroids obtained via superimposition,

arg min Zle > s,en, BM SD?(0;,S;) where O; denotes the optimal centroid of the set of
structures A; approximated via multiple structure superimposition [33]. It determines the
optimal k (number of clusters) using a Gaussian mixture model with Schwartz’s Bayesian
information criterion (BIC). Centroids are estimated with random sampling, and pruning
rotation spaces for globular proteins avoid pairwise RMSD calculations. ONION outper-
forms Pleiades with a polynomial-time approximation scheme, is faster than Calibur [34],
and is comparable to SPICKER [48] in performance.

ClusCo The main motivation behind the development of ClusCo software is to build a
high-throughput tool for all-versus-all comparison of protein structures with different prox-
imity measures using parallel k-means clustering. In terms of execution time, Durandal [9] is
faster than ClusCo [24], Calibur or SPICKER. Calibur uses heuristics-based preprocessing
to speed-up clustering in three ways: grouping of structures into proximity groups to avoid
pairwise RMSD computation (triangular inequality), utilizing efficiently computable upper
and lower bounds to skip RMSD calculation whenever possible, discarding structures with
low similarity to other structures (before clustering).

Calibur is faster than SPICKER, but SPICKER produces better structures by focusing
on low-energy regions and self-adjusting RMSD cutoffs. SPICKER, outperforms SCAR in
terms of the RMSD for top clusters. In [42], SPICKER is used along with additional steps
(filtering and cluster reduction based on multidimensional scaling). SCUD avoids pairwise
RMSD by using a random reference and sets protein-dependent cutoffs to balance cluster
sizes [31]. Durandal [9] accelerates clustering using triangular inequality and initializes dis-
tances with a random reference, incorporating quaternion-based characteristic polynomial
(QCP)-oriented RMSD for efficiency via information gain-based approach [10]. MUFOLD-
CL [47], using the D-Score metric, is the fastest and produces superior structures compared
to SPICKER, Pleiades, and Calibur.

SK-means [43] combines SPICKER and k-means to improve the selection of initial cluster
centers, addressing a key limitation of basic k-means. This method outperforms SPICKER
in terms of average TM-score for the reported best structure. SK-means has quadratic poly-
nomial time complexity.

Medoids-based Li et al. [32] propose an ensemble clustering method based on k-medoids
for protein structures. Unlike k-means, k-medoids selects actual data points as centroids.
The method generates multiple clustering outcomes through repeated k-medoid runs with
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random initializations, then combines them using a voting-based approach. It uses the TM
score to build a distance matrix and identify cluster centers. It outperforms SPICKER in
final structure selection. The method is also utilized in [22].

Ferone and Marateas [18] propose graded Possibilistic c-Medoids, a medoid-based variation
of graded possibilistic clustering combining fuzzy c-means (FCM) and possibilistic c-means
(PCM). Unlike standard fuzzy clustering, GPCMdd allows membership sums greater than
1, enabling a soft transition between probabilistic and possibilistic distance functions. This
makes it more robust to outliers and noise, effectively handling loosely related data. While
outperforming other medoid-based methods and SPICKER, its high computational cost lim-
its its feasibility for large structure datasets.

Hierarchical Clustering Methods: Strategies for hierarchical clustering generally fall
into two major types: agglomerative (a bottom-up strategy starting with each observation
as its own cluster, and consequent merging of pairs of clusters) and divisive (a top-down
approach starting with all observations as a single cluster, and recursive splits of the clusters)

Hierarchical Clustering of Protein Models (HCPM) [20] uses an agglomerative clustering
strategy with an average-link measure to calculate distances between clusters, measured by
cRMSD as the average inter-atomic distances. The cluster representative is the structure
nearest to the average distance map. The merging distance cut-off is determined using the
plateau-center finding approach in a sigmoid plot or by evaluating several probe values and
their cluster parameters. HCPM can also explore local energy minima in a protein energy
landscape [19], often applied with the CABS method, which models proteins using four
interaction centers per amino acid: C,, C3, the peptide bond center, and the side-chain
center of mass.

UQIlust [1] combines structural profiles with consensus ranking and profile hashing for effi-
cient hierarchical agglomerative clustering of protein structures. It projects 3D coordinates
into single-dimensional structural profiles by assigning each residue to a specific state, facil-
itating the comparison of structures to detect common substructures. UQlust employs two
heuristics: profile hashing-based clustering and reference-based partitioning, offering better
time and space efficiency compared to ClusCo. Additionally, Boutonnet et al. [13] came
up with a multiple linkage hierarchical clustering algorithm to analyze protein structural
changes.

bel-Cluster [7] employs an agglomerative hierarchical clustering algorithm using pre-calculated
pairwise distances between structures. It supports various proximity measures, including
GDT, longest continuous segment, MaxSub, RMSD, largest common substructure, and Tan-
imoto coefficient. A pre-clustering step combines structures with specified similarity into
clusters in a single pass. Integrated with PyMOL, bcl-Cluster provides detailed outputs,
including dendrograms, molecular structures, cluster sizes, and color-coded results based on
numerical descriptors.

Probabilistic Hierarchical Clustering [17] combines fuzzy c-means clustering (FCM) and a
divisive hierarchical algorithm and identifies the number of clusters dynamically. The clus-
tering cutoff is probabilistically determined based on variability. FCM starts with randomly
chosen centroids and iteratively computes the degree of belonging for each structure us-
ing a normalized inverse distance from the centroid. New centroids are calculated as the
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weighted mean of structures, and the process repeats until convergence. Then divisive hier-
archical clustering splits the structures into two subsets, temporarily removing redundant
structures. It selects partitions based on a probability proportional to size and inversely pro-
portional to internal variance, continuing subdivision until partition means are statistically
significant.

Parallel Ward Clustering [16] employs a massively parallel CUDA implementation of the
nearest neighbor chain algorithm for hierarchical Ward clustering of protein structures, us-
ing atom-based RMSD and rigid-body RMSD. For atom-based RMSD clustering, three
strategies are analyzed: Threads per Atomic Coordinate (TAC), Thread Blocks per Cen-
troid (TBC), and Threads per Cluster Centroid (TCC). Among these, the TCC approach
demonstrates significant speedup over multi-threaded CPU implementations and surpasses
ClusCo in performance, while also enabling the computation of the full hierarchical tree.
Additionally, ClusPro [15] applies a pairwise RMSD-based hierarchical algorithm to cluster
protein structures after an initial filtering step based on desolvation and electrostatic prop-
erties.

Graph-based Clustering Methods: For graph-based techniques, the first step is to rep-
resent the given set of structures in terms of a graph. An intuitive way is to employ the
nearest-neighbor graph.

Nearest-neighbor Graph The proximity of the molecular structures under consideration can
be encoded in the structure space via a nearest-neighbor graph (nngraph). Consider 2, a
set of structures that can be embedded in a nearest-neighbor graph (nngraph) G = (V, E)
where the vertex set V is populated with the structures, and the edge set E is populated by
inferring a local neighborhood over each observation. The distance between two structures
can be measured in terms of a suitable proximity measure (and an appropriate threshold for
the same) after optimal superimposition with respect to a reference structure. In fact, such
graph embedding of molecular structures of proteins has been considered in [4,28] under the
context of template-free protein structure prediction.

Zhou et al. [49] employ techniques for constructing amino acid network-based graphs, also
known as residue interaction graphs (RIG), where nodes represent amino acids through all
atoms, side-chain atoms, or only C, or Cg atoms. Edges in the graph are characterized by
similarity measures such as physical distance or residue interaction energy between atomic
units or side chains. Another work [28] utilizes nearest-neighbor graphs (nngraphs) and
community detection algorithms, originally developed for social networks, to group protein
structures. On the other hand, the Basins-Select [4] detects basins in the energy landscape
by considering the potential energies of protein structures. It constructs a nearest-neighbor
graph (nngraph) and extracts basins by first locating points of attraction or focal minima,
which are vertices representing local energy minima. Fach local minimum represents a basin.
The other vertices are assigned to basins by following a negative gradient descent, deter-
mined by the edge (u,v) that maximizes the ratio [e(u)—e(v)]/d(u,v), where e(u) is the
energy of structure represented by vertex u and d(u,v) is the distance between vertices u
and v. This process continues until a local minimum is reached, with all vertices converg-
ing to the same minimum assigned to the corresponding basin. It leverages the Structural
Bioinformatics Library (SBL) [14] to decompose the structure nngraph into basins.

Factorization-based Methods: NMF-MAD [2] opens up a new avenue by exploring the
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Table 2. Comparison of Different Methods

Name

Key Characteristics

Comparison found
in literature

Evaluation
Criteria

SPICKER (48]

— shrink the dataset (least energy structures from
subsets)

— pairwise RMSD cutoff to determine cluster
membership

— structure with the most neighbors as cluster center

better than SCAR by the quality
of the top cluster

RMSD from an
experimentally known
structure

SCAR [12] — relative RMSD (RRMSD) demonstrates the effectiveness of Avg. RMSD (cluster)

— global cluster cutoff to determine cluster membership RRMSD over RMSD

— cluster-wise cutoff for refinement
ONION [33] — centroid approximation by MULTIPLE STRUCTURE — slightly better than SPICKER TM-Score

SUPERIMPOSITION in single model selection
— similar to kmeans (by objective function) — faster than Calibur and
SPICKER

Calibur [34] — auxiliary grouping of structures (threshold selection with|— faster than SPICKER — Avg. TM-Score w.r.t. the

Cq RMSD) — slightly better than SPICKER experimentally known

— preliminary screening via lower and upper bounds structure (cluster)

— filtering of highly dissimilar structures from the dataset — Cq RMSD w.r.t. the
experimentally known
structure (single structure)

ClusCo [24] — high-throughput comparison of protein structures — clustering results comparable to comparison with ref.
— different similarity measures (RMSD, GDT-TS, Calibur structure by different
TM-Score, MaxSub) — faster than SPICKER and similarity measures
Calibur but slower than Durandal (RMSD, GDT-TS,
TM-Score, MaxSub)
Durandal [9] — randomly chosen reference for distance matrix faster than Calibur and SCUD RMSD
computation
— lower and upper bound strategy to favor distance
ranges  over exact measures
— uses the triangular inequality to accelerate exact
clustering
Pleiades [23] — Gauss integral representation for the tertiary — (slightly better) comparable to RMSD
structures of proteins Calibur by all-atom RMSD
— approximation of RMSD via Euclidean distance — faster than Calibur
SCUD [31] — RMSD from randomly chosen reference as proximity slower than Durandal RMSD
measure
— most neighboring structure: cluster representative
— Representative structures are ranked by cluster size
SK-means [43] — integrates SPICKER with k-means better than SPICKER RMSD
— centroid of the largest cluster: best structure
Ensemble method — k-medoids algorithm is run several times (with — better than SPICKER RMSD
based on different  initializations) — time-consuming
k-medoids [32] — voting to combine the clustering outcomes
— largest cluster as the best cluster
Graph Clustering — encoding of proximity via nearest neighbor graph landscape analysis-based methods Purity

Methods [4, 28]

— community detection/ energy landscape analysis

perform better than
community-based methods

MUFOLD-CL [47]

— D-Scores based measures having high correlation with
RMSD and TM-Score

— projection-based clustering

— largest cluster as the best cluster

— faster than most of the
approaches

— better than SPICKER,
Pleiades, Calibur and a bit worse
than ONION (avg. RMSD of
prototype of top five clusters)

— avg. RMSD from the
experimentally known
structure (cluster)

— RMSD from the
experimentally known
structure (single

structure)
HCPM [20] — agglomerative strategy with the average link slower than k-means-based RMSD
— cluster representative: the structure that is the closest |methods but performs better
to the the average distance map of the cluster than those
— initial screening based on energy and gyration radius
TQlust [1] — projection of 3D coordinates into a suitable 1D — time and memory efficient than MaxSub Score

structural profile
— geometric consensus ranking
— largest cluster: best cluster

ClusCo, Sk-means
— better than ClusCo and
Pleiades

bcl-Cluster [7]

— relies upon pre-calculated pairwise distances
— accommodates a variety of proximity measures
— offers a pre-clustering step

offors a wide range of proximity
measures to choose from

several proximity
measures

Parallel Ward
Clustering [16]

the noarcst neighbor chain algorithm for hierarchical
Ward clustering of protein structures

— faster than ClusCo
— clustering results comparable to
Clusco

TM-Score (for single
structure selection)

NMF-MAD [2]

Jdomain-specific feature-based non-negative matrix
factorization

better than the methods
mentioned before this one in this
table

RMSD (for single
structure selection)

SNMF-DS [27]

symmetric non-negative matrix factorization on
RMSD-based distance matrix

better than NMF-MAD

RMSD (for single
structure selection)

NTF-REL [26]

utilizes tensors to capture multiview of protein tertiary
structures

better than all of the other
approaches mentioned in this
table in terms of quality
assessment

multiple proximity
measures
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route of matrix factorization to identify biologically active protein tertiary structures via
utilization of the domain-specific features. SNMF-DS [27] dives in this direction further
to demonstrate a feature-free and non-parametric method based on symmetric non-negative
matrix factorization. Furthermore, NTF-REL [26] shifts from matrix-factorization to tensor-
factorization to serve as a quality assessment method for protein tertiary structures in ad-
dition to grouping the same.

Other mentionable techniques for unsupervised learning of molecular structures include-
uniform time clustering, regular space clustering along with Markov state modeling (MSM)
offered by PyEMMA [37], ICON [40], granular clustering based on growing local similari-
ties [21], clustering based on the distribution of local minima [30], conserved residue clus-
tering [38], score-based clustering using ligand RMSD. Table 2 captures the key properties
as well as provides a brief comparison of the discussed methods.

3.4 Evaluation Metrics

Two sets of metrics are typically employed in unsupervised learning literature. The first
set (consisting of external metrics) is designated here as application-specific. The second
set contains internal metrics, termed here as application-agnostic. It is worth noting that
unsupervised learning research for molecular structure data presents several adaptations of
both external and internal metrics as inspired by domain insights.

Application-specific Metrics

While most of these works assume that there is no external information about what states
the clusters capture (that is, no ground truth), they often leverage the availability of known
experimental structure(s) for a protein of interest in the PDB. Many external metrics take
this into account.

Applying Similarity /Distance Metrics: SCAR computes the average RMSD of the
structures (w.r.t. experimentally known structure) in a cluster to compare the quality of the
cluster [12]. A similar process is followed in [9,23,31,47,48](with TM-score in [33,34]).
Purity: This measure is used with the graph-based techniques [4, 28]. For a given cluster,
it computes the fraction of structures that are very similar to the experimentally known
structure in the cluster over the total number of structures contained by the cluster [4].

Application-agnostic Metrics

The works that employ these metrics don’t take into account the availability of the experi-
mentally known structure or other external information.

Utilization of Proximity /Distance measures: ClusCo selects the best cluster by min((—l?) ,
where £ denotes the fraction of elements in a particular cluster and (R) denotes the average
RMSD between cluster elements. And the cluster center of the best cluster is selected as the
best structure. ClusPro [15] takes into account the center of the most populated cluster as
the best structure. To determine the cluster quality, SPICKFER considers normalized struc-
ture cluster density, D defined as, D = (RTMD)MN where M is the multiplicity of structures
in the cluster, M; is the total number of structures to be clustered and (RMSD) denotes
the average RMSD of the structures in the cluster. ICON [40] measures the cluster quality
in terms of cluster concentration, CC; = R%m; where N; is the number of structures
in the cluster and RMSD; denotes the average RMSD of the cluster. Besides, UQlust [1]
reports the centroids of the five largest clusters as the top scoring structures. HCPM [19,20]
considers RMSD distribution of the intra-cluster structures and inter-cluster’s centroids to
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assess the clusters’ quality.

Clustering Coefficient: Network properties e.g., average degree, clustering coefficient, and
size of the communities are taken into account by Zhou et al. [49] to analyze the communi-
ties/clusters obtained from amino acid network-based graph representation of the structures.
The Clustering Coefficient, C' can be computed as, C; = % where m is the degree of
vertex ¢ and E; denotes the number of connections from all neighbors of . The clustering
coefficient C' of a cluster is the average of C;.

Confidence score: To capture the size and internal similarity of a cluster, Li et al. [32]
Zien Z]‘ec sim(i,5)

o1 2j—1 stm(i.7)
number of structures, ¢ is the cluster under observation and sim(i,j) denotes the corre-
sponding entry in the similarity matrix. The cluster center with the maximum confidence
score contributes to the selection of the best structure.

compute a confidence score for each cluster, CS = where n is the total

4 Discussion

Even though significant works have been conducted (most being application-specific), there
are ample open problems and ways forward such as:

i. How to pick a structure that represents a cluster (beyond traditional ways of doing
that)? This is an important question to answer, particularly when the clustering is in support
of a specific application or when the goal is data reduction. For instance, Akhter et al. [5]
consider the potential energy of a structure and even employ a density-based structure
weighting scheme to do so.

ii. The design of a proper distance function will remain an interesting direction of re-
search. For instance, how to design a meaningful distance function (beyond Ll-norm) for
the dihedral angle representation as well as take it into account for clustering? The distance
function should be robust in response to experimental and modeling errors and should have
the capability to capture the proximity between structures at any level of resolution.

iii. Are the structures themselves sufficient for finding patterns or consideration of ad-
ditional properties of molecular structures (e.g., energy-based features [2]) is needed to im-
prove the clustering results? Moreover, representation learning via auto-encoders [6] may
prove useful to highlight the main dimensions that possibly reveal interesting organizations.

iv. Subspace clustering presents an unleveraged direction at the moment. Furthermore,
subspace clustering promises to find the subset of dimensions (all dimensions might not be
relevant) that reveal an informative grouping of the clusters. One can also consider dimension
weighting and reduce the problem to learning the weights of the different dimensions for
optimizing an objective function that corresponds to the quality of the clustering.

5 Conclusion

This article presents an effort to organize the landscape of research on the clustering of
molecular structures of proteins. As highlighted, direct comparison of existing methods is
sometimes difficult due to the lack of standards with regard to benchmark datasets and
metrics used. As identified above, there are several directions of research that may improve
current efforts to reveal the underlying organization of molecular structures to elucidate
structural states as an exploratory step toward understanding the behavior of a dynamic
molecule.
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