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Abstract—There are many benefits in providing formal spec-
ifications for our software. However, teaching students to do
this is not always easy as courses on formal methods are often
experienced as dry by students. This paper presents a game called
FormalZ that teachers can use to introduce some variation in
their class. Students can have some fun in playing the game
and, while doing so, also learn the basics of writing formal
specifications. Unlike existing software engineering themed ed-
ucation games such as Pex and Code Defenders, FormalZ takes
the deep gamification approach where playing gets a more
central role in order to generate more engagement. This short
paper presents our work in progress: the first implementation of
FormalZ along with the result of a preliminary users’ evaluation.
This implementation is functionally complete and tested, but the
polishing of its user interface is still future work.

Index Terms—teaching formal method, gamification in teach-
ing formal method, gamification in teaching software engineering
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I. INTRODUCTION

In the world of fast churning software industry, we might
wonder whether applying formal methods is a viable option,
since formal proofs are arguably hard to produce. Even if we
can get programmers with the needed mathematical skill to
produce them, the process is too slow to keep up with the
pace of modern agile development. On the bright side, we do
not need to exercise the full scale of formal methods to reap
its benefit. Much can already be gained just by writing formal
specifications. This does not require sophisticated mathemat-
ical skills, and nowadays not even a separate specification
language and a separate tool chain anymore. Many modern
programming languages support λ-expressions, which allows,
for instance, predicate logic formulas to be expressed natively
in the programming languages themselves.

Having formal specifications enables verification through
automated testing or bounded model checking1. While this
benefit might be clear in the eyes of a computer scientist,
convincing practitioners to write formal specifications is still
not easy. The myth that any form of exercising formal methods

Funded by the EU Erasmus+ grant 2017-1-NL01-KA203-035259.
1While one can employ these techniques in the absence of a formal

specification, only the correctness with respect to general properties, such
as absence of crash or abnormal CPU usage, can be verified.

requires sophisticated math remains, and this is perhaps also
a message that programmers somehow picked up from their
education, where lectures in formal methods tend to be terse
and dry. Students receive more points from being able to
construct formal proofs. Demonstrating the ability to write
formal specifications receives less points, hence creating the
perception that it is less important (whereas we just argued
that it is a more usable skill).

This paper presents a browser-based education game called
FormalZ that teachers can use to break the typical monotony
in a class on formal method by allowing students to have some
fun playing the game, while also learning the basic of writing
formal specifications. Unlike existing software engineering
themed education games like Pex [1] and Code Defender [2],
FormalZ takes a deeper gamification approach [3], where
’playing’ is given a more central role. After all, what makes
games so engaging is not merely the awarded scores and
badges, but primarily the experience of playing them. The
ultimate research question that intrigues us is whether such an
approach will actually make a difference towards the game’s
ultimate learning goal. This is still on-going work. Currently,
we have a fully functional implementation of FormalZ, but
polishing the user interface is still future work. In this short
paper we will present its game concepts and the result of a
preliminary users’ evaluation.

II. FORMALZ GAME CONCEPTS

In FormalZ, teachers provide exercises in the form of
program headers and informal descriptions of the intended
program behaviour. For each exercise, the student is asked
to translate the informal description into formal pre- and post-
conditions. An example of such an exercise is shown below:

”Given a non-empty array a, the program
int getMax(int[] a) returns the greatest ele-
ment in the array.”

The teacher accompanies the exercise with a solution in
the form of a formal specification, written in a Domain
Specific Language (DSL) that closely resembles predicate
logic formulas. The DSL is embedded in Java, so the teacher
can simply use Java SDK to test the solution (if it reflects
what he/she has in mind), before deploying the exercise to the
class. Section II-C will provide more details on this DSL.

A student solves the exercise by offering a pre- and post-
condition which are equivalent to the teacher’s solution. For-



Fig. 1. A screenshot of FormalZ. The CPU that has to be defended is in the
middle. The small red and blue blobs represent data coming to or leaving
the CPU. The green circles are the pre- and post-condition scanners, used to
mark blobs — we can see that some red blobs are left unmarked (not good),
and some blue blobs are marked (also not good). Defence towers (yellow
circles) must be placed to shoot down marked blobs; one tower can be seen
as ’zapping’ at a wrongly marked blue blob. More towers can be placed to
get higher score, subject to the available budget (top left).

malZ frames this in a game of defending a CPU, which is a
re-interpretation of the popular tower defence genre of games.
The CPU symbolizes the program that is being specified. The
story line is that hackers manage to find a way to influence data
packages that flow into and out from the CPU. Data packages
are represented by blobs, see Figure 1: red blobs are data
that the hackers manage to corrupt to incorrect values, and
blue blobs are those that are still ’clean’. No incoming red
blob should reach the CPU, nor leave the CPU to reach the
environment. To defend against this attack, the CPU’s circuit
board provides two scanners, one on the input side of the
CPU, and one on its output side. Both can be programmed
to identify and mark certain blobs. Other hardware called
’defence towers’ can be added to the circuit board to discard
marked blobs.

The scanners symbolize the pre- and post-conditions that the
student should construct. An incorrectly programmed scanner
would leave some red blobs unmarked, and may also wrongly
mark blue blobs. The latter is also bad, since they represent
good inputs or outputs, which the towers would subsequently
wrongly discard.

A. Constructionism

To construct the pre- and post-conditions the student gets
a special construction panel where blocks can be placed to
construct a formula; see Figure 2. Each block represents either
a variable, a constant or an operator. Wires are used to connect
the blocks to construct the tree representation of the formula;
its so-called Abstract Syntax Tree (AST). Simply typing the
formula is deliberately disallowed; let us motivate this from
the perspective of the Constructionism theory of learning [4].

The theory believes that humans learn by constructing
knowledge, rather than by simply transferring this knowledge
from a teacher into the head of a watching learner. Familiar
physical objects play a key role in this process, because the
learner already has knowledge on how they work [5]. When

Fig. 2. The construction pane of FormalZ. The user can construct a pre- or
post-condition by dragging blocks, essentially the AST of the formula that the
user has in mind.

new knowledge is framed in terms of interactions with these
familiar objects, it helps the learner to construct the new
knowledge in his mind. The theory was originally proposed
by Papert and Harel [4]. Papert used LOGO as an example,
which he used to teach programming to children. A learner can
easily relate the ’turtle’ in LOGO with his/her own physical
body which can turn and move forward and draws upon this
analogy to learn LOGO programming concepts.

In FormalZ, the blocks (in the formula building) are visu-
ally depicted as electronic hardware components, which are
concepts that do exist in the physical world (as opposed to
e.g. a ”variable” which does not really have tangible physical
existence) and can be assumed to be recognizable to most
computer science students. Likewise, the wires that connect
the blocks relate well to our physical experience, where
electronic components always need to be connected by wires.
By requiring the user to first locate the right block, drag it to
the construction pane and then explicitly connect it to other
blocks with wires, we enforce more self-conscious interactions
by the user, hence creating a more gradual and deliberate
process of knowledge construction, as opposed to just letting
the user type in formulas.

B. Deep gamification

Introducing gamification just by adding game components
like points, badges and leaderboards (what in [3] is called shal-
low gamification), would miss some key aspects such as play
and fun, which are important to make a game engaging [6].
For example, awarding a badge to a student for completing a
certain task acknowledges a certain achievement, but it does
not mean that the task is fun to do. Making the task fun
would evoke more engagement, which we believe will improve
learning as well (an opinion also shared by Prensky in his
classic work ”Digital Game-Based Learning” [6]).

Although constructing formulas using blocks is to some
degree fun, it is still a quite formal task as it has to abide by
a whole set of rules (e.g. we cannot connect an && block to
an integer block, nor connect it to more than one parent) and
is therefore not really ’playful’. An important characteristic
of a play, as Caillois [7] puts it, is that it is not obligatory;



if it were, it will lose its joyous quality. Although playing
FormalZ is not obligatory (at least, we do not envision it to
be so), having more rules does evoke some sense of being
obliged to do things in a certain way. To create play, FormalZ
therefore frames the challenge of constructing pre- and post-
conditions as a defence game where the goal is to prevent
corrupted blobs from reaching their destination, while letting
through as many clean blobs as possible. To do this the player
also has to strategically place defence towers on the circuit
board to shoot and remove marked blobs. There are different
kinds of towers, each with unique features. The selection and
placement of the towers are subject to almost no restriction.
The student is free to experiment to figure out which strategies
lead to better scores, though ultimately best scores are only
attainable with the help of correct pre- and post-conditions.

C. Java DSL

To specify pre- and post-conditions in a model solution,
the teacher must write them in a DSL. The main design
criterion was easy integration with the Java ecosystem to
allow teachers to test out solutions using the Java SDK and
enable future extensions where students are also asked to
implement the specified program. To this end we chose to
embed the DSL in Java, rather than follow a more extrinsic
approach (e.g. custom Java pre-processor). To specify pre-
conditions or post-conditions, we use the pre and post func-
tions, supplied with a boolean expression as the argument.
These expressions must be Java expressions, constructed using
known boolean operators such as negation (!), conjunction
(&&) and disjunction (||). To aid readability, we allow multiple
pre/post statements, which are conjunctively interpreted (e.g.
pre(f1);pre(f2) ≡ pre(f1&&f2)).

The DSL also allows implication (imp(f1,f2) ≡ f1 ⇒
f2) and polymorphic equality (==) between a fixed universe
of types, namely integers (int, short, long), reals (float,
double), and multi-dimensional arrays of the previous types
(e.g. float[][]). Any equality check on expressions of a dif-
ferent type is equivalent to false, except when Java semantics
allow coercions between different numeric representations.

The usual representation-agnostic numeric operations are
supported: +,-,*,/,% and comparisons (<,<=,>,>=).

To allow formal specifications of programs working on
arrays, we additionally support the following array operations:

• Retrieving an array’s length, as in a.length > 0.
• Indexing an array, as in a[5] == 0.
• Universally/existentially quantifying over the elements of

an array, as in forall(a, i -> a[i]==0).
Notice that we use λ-expression args->body, which was
added to Java since Java-8, to model universal/existential
quantification. Below is a possible specification of the exercise
shown in Section II:

public static void getMax_spec(int[] a) {
// pre-conditions
pre(a != null);
pre(a.length > 0);

// call to actual implementation

int retval = getMax(a);

// post-conditions
post(exists(a, i -> a[i] == retval));
post(forall(a, i -> a[i] <= retval));

}

D. Checking specifications

Given a teacher specification M and a student specification
S, FormalZ’s backend will try to determine whether the two
specifications are semantically equivalent: M ≡ S. While this
is ultimately what the student is aiming for, the backend also
provides helpful feedback in the case of an incorrect student
solution. Specifically, when M 6≡ S it also gives the following
information:

• If the student solution is too strong: S ⇒M
• If the student solution is too weak: M ⇒ S
• Which of these combinations are satisfiable: M∧S, M∧
¬S, ¬M ∧ S, ¬M ∧ ¬S. This information controls the
generation of the blobs and their marking. E.g. if ¬M∧S
is satisfiable the game will generate at least one unmarked
red blob, and if M ∧ ¬S is satisfiable then at least one
marked blue blob is generated.

FormalZ implements two backends.
Z3: The principal Z3 backend converts the abstract syntax

tree (AST) of Java expressions to the AST used by the Z3
theorem prover [8]. We can then freely invoke the Z3 solver
to try to prove that the queried logical formula is actually true.

Random testing: While most teacher examples are ex-
pected to lie in Z3’s decidability range, in general they are
undecidable. So, we also provide a second backend that
employs random testing to approximate the aforementioned
truth-values.

The random testing backend first looks at M and S to
identify clauses that are present in both, possibly in different
but equivalent forms (e.g. the teacher wrote a ⇒ b whereas
the student wrote ¬a∨ b). It then removes these clauses, since
they cannot possibly influence the validity of M ≡ S, and
would result in simpler formulas on which an randomized
equivalence test can be performed more quickly.

After the elimination step, the random testing backend starts
a repeating process. In every iteration of the process, it first
generates random values for all variables present in either M
or S, including non-primitive variables like (multidimensional)
arrays. It then substitutes these variables in both M and S for
the generated random values and evaluates the two formulas.
During the evaluation step, universal and existential quantifiers
are only partially evaluated, meaning that only a limited
number of iterations of the quantifier are actually evaluated,
for the sake of running time. After the evaluation step, M
and S will reduce to a single boolean literal, from which the
backend concludes whether M ≡ S is satisfied, or if that
is not the case, which other cases (see above) do apply. This
approach is repeated multiple times to increase the confidence,
and the combined results are returned by the backend.



(1) I understood what the goal of the

game was.

(2) The way Tower Defence and Block

Building were connected was clear.

(3) Figuring out what I could do was

enjoyable.

(4) The way the resources worked was

clear, and they were fun to manage.

(5) The provided gameplay feedback

was clear and understandable.

(6) I liked the overall look of the game.

(7) I had fun while playing the game. (8) Thinking of ways to combine towers

and create set-ups was fun.

(9) Figuring out what blocks to make

use of was interesting and enjoyable.

Fig. 3. The evaluation results. Each question takes the form of an assertion, to which a student can disagree (blue –left most bar), somewhat disagree, neither
agree nor disagree, somewhat agree, or agree (purple –right most bar).

III. PRELIMINARY EVALUATION

To evaluate how our concept worked with students we ran
a playtest with students that were taking the bachelor course
Software Testing and Verification at Utrecht University. This
group was chosen as this is the typical target audience for
the game. They played a previous version of the game and
feedback received in this session has already been incorporated
in the game as it is now. After they played the game for
approximately 30 minutes, including a short tutorial they
could take to get introduced to the basics of the game, they
were asked to complete a questionnaire. This resulted in 26
responses. Key results are shown in Figure 3.
We can see that the ultimate goal of the game was understood
by most students (graph 1), as well as a majority being able to
see the link between the separate key elements (defence towers
and block building, question 2) of the game. However when
we went deeper into the different aspects of the game, it was
clear that students struggled slightly more with understanding
how everything worked. An example of this is question 4 on
resource (e.g. money and towers) management where the result
shows a clear split: 13 people agreed to an extend, while 11
disagreed. We are not sure what exactly causes this split; it
might be related to prior gaming experience of the students.
FormalZ’s way of giving feedback does resonate with students
in general, as they were positive on average about it (graph 5).
Improvement is still called for, as quite a few people also did
not think the feedback was clear. Students were less positive
about the overall look of the game (graph 6). This is something
that is actively worked on as a priority.

The students are positive about having room to figure things
out themselves (that is, to be allowed to ’play’, which is a point
deep gamification tries to put more emphasis on), as is shown
in graph 8 for the Tower Defence aspect specifically and graph
9 for the Block Building. Overall, graph 7 shows that students

are neutral or positive about the enjoyability of the game on
average.

IV. CONCLUSION AND FUTURE WORK

We presented a fully functional implementation of the game
FormalZ, which teachers can use as an alternative medium to
help them teach students how to write formal specifications.
FormalZ adopts a combination of the constructionist and
the deep-gamification approaches. Our preliminary evaluation
indicated that most our subjects perceived the approach pos-
itively. Despite the greater emphasis on the ’play’ element,
most subjects at least understood what the game’s goal was.
We cannot however confirm yet, if such an approach would
indeed improve the students’ learning. This requires further
experiments, which for now are left as future work. Addition-
ally, the game needs some cosmetic improvement to make it
look more pleasing and presentable; this is also future work.
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