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Abstract. With the continuous popularization of quantum comput-
ing, high-efficiency quantum computing simulators have attracted re-
searchers’ attention because the running time and memory overhead of
quantum computing is increased exponentially, which means that it is
challenging to be simulated on a traditional computer. The current main-
stream work solves this problem by using multi-node clusters, and we find
that its single-node performance has not been effectively exerted. This
paper proposes HpQC (High-performance Quantum Computing), a sim-
ulator that can efficiently parallel quantum computing on a single-node
multi-core processor. First, HpQC used AVX2 and FMA instruction sets
to maximize the advantages of SIMD (Single Instruction Multiple Data)
vectorizations; second, it reduced the CPU calculation cycle by using
faster and more efficient bit operations; and finally, we designed innova-
tion data structure to utilize spatial locality of cache effectively. Besides,
this article selects the state-of-the-art quantum computing simulator,
QuEST (the Quantum exact simulation toolkit), as the benchmark for
performance evaluation. For the quantum fourier transform, experimen-
tal results show that HpQC can achieve an average acceleration of 2.20x
(GNU compiler) and 1.91x (Intel compiler), respectively, compared to
QuEST. As for the random quantum circuit program, HpQC can achieve
an average speedup of 1.74x (GNU compiler) and 1.51x (Intel compiler),
respectively, compared to QuEST.

Keywords: HpQC - QuEST - SIMD - Memory access optimization -
Quantum fourier transform - Random quantum circuits

1 Introduction

As we all know, quantum computing [1] is a new type of computing model.
Due to the characteristics of quantum mechanics, it has higher computing ef-
ficiency than traditional computing models. At least in the currently known
quantum computing algorithms, such as quantum random walk [2], quantum
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fourier transform [3], and other algorithms, its processing speed is much faster
than traditional computing. Therefore, quantum computing is usually applied to
large-scale and sophisticated data processing and calculation, such as cryptog-
raphy [4-6], artificial intelligence [7-9], and other fields. With the development
of science and technology in various fields, quantum computing with inherent
time complexity has been unable to meet the needs of related applications. For
this reason, many researchers in related fields try to obtain higher performance
through parallel quantum computing.

The realization of quantum computing must depend on the corresponding
computing equipment. Admittedly, many scholars have currently used quan-
tum computers to complete some quantum simulations or achieve more efficient
optimization[10-13], due to their expensive cost and immature technology, we
need to find cheap and practical alternatives to simulate quantum computing.
In this regard, many research scholars have developed efficient simulators for
simulating quantum computing based on traditional computers, such as the sim-
ulation of random quantum circuit implemented on Sunway TaihuLight [14], the
realization of efficiently implementing quantum computing simulations by using
CUDA programming on GPUs [15], and the implementation of quantum circuits
based on FPGA [16].

Due to the exponential growth of quantum computing runtime and memory
overhead in traditional computers [17], it is challenging to perform quantum
computing simulations on traditional computers. To further improve the perfor-
mance of the simulator, some research scholars have made corresponding opti-
mizations based on the characteristics of the processor architecture. Simulation
may be difficult because of memory limitations, which follows that the simulation
of quantum algorithms instead of single gate operations can give the simulator
significant performance improvement [18]. It is also possible to use more efficient
data compression to obtain the simulation of more qubits [19]. However, the ideal
simulator needs to balance memory space and computing time. ProjectQ [20] is
a quantum computing emulator developed based on a single-machine multi-core
processor. It uses OpenMP, AVX instruction set, and cache blocking to ob-
tain efficient parallelization. On distributed-memory machines, gHiPSTER(the
Quantum High Performance Software Testing Environment) [21] improves per-
formance by using multi-threading, vectorization, and cache partitioning on a
single machine; it also efficiently performs quantum calculations on multiple ma-
chines by dividing the load equally, while reducing communication time as much
as possible. Some researchers have also realized automatic code generation and
calculation optimization on multi-machine multi-core processors with excellent
portability[22].

Good vectorization and cache blocking operation can bring excellent perfor-
mance to the simulator, and balanced load processing capacity is the key to
large-scale parallel computing. At present, QUEST (High-performance Quantum
Computing) [23] is the first open-source quantum computing simulation simula-
tor that supports three different architectures of single-machine multi-threading,
multi-machine multi-threading, and GPU. Due to its balanced load processing
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capability, QUEST has comparable and better computing performance than Pro-
jectQ on single-node multi-core processors, although it does not use SIMD(Single
Instruction Multiple Data) vectorization and cache blocking optimization.

As the quantum simulators developed quantum simulators, it is becoming
more and more common to use multi-node clusters to solve simulation problems.
However, its single-node performance has not been effectively exerted. First, the
simulator fails to utilize the advantages of SIMD vectorization fully; second, a
large number of redundant calculations lead to reduced performance; third, the
traditional data structure can not give full play to the advantages of spatial
locality of cache.

This paper proposes HpQC (High-performance Quantum Computing), which
is a simulator that can provide efficient parallel quantum computing on a multi-
core processor. First, HpQC has better vectorization performance; second, it re-
places the time-consuming multiplication and division operations by introducing
low-overhead bit operations; third, it uses innovative data structures to maximize
the spatial advantages locality of the cache. This paper selects the state-of-the-
art QuEST quantum computing simulator as the benchmark for performance
evaluation. Experimental results show that HpQC has better performance than
QuEST. When executing the program of QFT, HpQC can achieve an average
speedup of 2.20x (GNU compiler) and 1.91x (Intel compiler), respectively, com-
pared to QuEST. As for the implementation of random quantum circuits, HpQC
can achieve an average speedup of 1.74x (GNU compiler) and 1.51x (Intel com-
piler), respectively, compared to QuEST.

Specifically, our contributions:

(1) A parallel computing method that efficiently uses AVX2 and FMA in-
struction sets is designed to optimize its vectorization operation.

(2) An innovative and fast shift operation method is designed to optimize
the calculation of qubits.

(3) An creative data structure is proposed so that the advantages of spatial
locality of cache can be maximized and the memory access optimization can be
achieved.

2 Background

2.1 Basic operations of quantum computing

The basis of quantum computing is qubit. Not only can qubits realize the classic
|0) and |1) states, but they can also express the superposition state through
linear combination. For an m-qubit, it can have 2™ states, which is also the key
to quantum parallelism [12].

Large-scale quantum computing programs are usually composed of many
quantum logic gates. CNOT gate, Hadamard gate, Unitary Transformation of-
ten appear in many programs, because they all play the essential role in state
transition.

CNOT gate CNOT gate can usually control the controlled quantum object
and is generally used to entangle the quantum. The conversion results of |00),
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|01), |10), |11) by using the CNOT gate are demonstrated in Fig.1 (a). If the
control bit is 0, the target bit remains unchanged; otherwise, the control bit is
1 and the target bit is inverted.

Hadamard gate In quantum computing, it is usually possible to perform
a Hadamard gate operation on |0) or |1) to make it in a superimposed state.
Fig.1 (b) shows the Hadamard gate and demonstrates the conversion process of
|0) and |1).

Unitary Transformation Quantum states are not immutable. One quan-
tum state can also evolve into another quantum state through the unitary matrix,
and the process of transformation is called unitary transformation. In Fig.1 (c),
the results of |0) obtained after Unitary Transformation are demonstrated.
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Fig. 1. CNOT Gate, Hadamard Gate and Unitary Transformation.

2.2 Classic quantum computing program

Quantum Fourier Transform The QFT(quantum fourier transform) [24] is
the foundation of quantum logic gates, and it is also the core component of
various quantum algorithms. Because of its extremely low time complexity [3],
it is often used to solve complex problems such as large prime factorization. The
calculation process of QFT is periodic, and the program is commonly composed
of basic quantum gates such as CNOT and Hadamard, which made it easier to
master and understand. Fig.2 shows the QFT operation of 3 qubits.
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Fig. 2. The QFT operation of 3 qubits.
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Random quantum circuits Random quantum circuits are outstanding
candidates for proving quantum supremacy [25]. Normally, the simulation of
quantum computing is random and irregular, which lead that the user cannot
accurately determine the final result of the calculation in advance, so we can-
not perform special optimization operations by searching for regularity or other
similar methods. It can be seen that many logic gates present in the random
quantum circuit must be executed in order. Therefore, it is vital to improving
the performance of the single-door operation because this is the key to the overall
performance improvement.

3 Optimization method

3.1 SIMD vectorization

SIMD vectorization has always existed in many calculation optimizations, and its
existence can make parallel operations better perform on a single calculation of
multiple data. For the QuEST quantum computing simulator with load balancing
advantages, it still has comparable or even better performance than ProjectQ
although without the SIMD optimization. However, a large amount of data in the
QuEST for a single calculation operation does not perform well. After analyzing
the specific program by using the Perf tool , we found that although the single
calculation operation inthe program has been automatically vectorized by the
compiler, it still occupied a sizeable overall overhead. To avoid this situation, we
need to add the SIMD inline function for vectorization optimization manually
in HpQC simulator.

Algorithm 1 QuEST compactUnitary

Input: sizeBlock, sizeHalfBlock, thisBlock, indexUp, indexl.o, numTasks,
RU, RL, IU, IL, al, aR, bl, bR, numTasks, stateVecReall], stateVec-
Imag]

1: numTasks < (qureg.numAmpsPerChunk >> 1)
sizeHal f Block < (1 << targetQubit)
sizeBlock < 2 x sizeHal f Block
for i < 0 to numTasks in parallel do

thisBlock <+ i/sizeHal f Block

indexUp < thisBlock x sizeBlock + i1%sizeHal f Block

index Lo «+ indexUp + sizeHal f Block

RL «+ stateVecReal[indexUp] , IL + stateVecImaglindexUp]

9:  RU < stateVecReallindexLo] , IU «+ stateVecImag[index Lo]

10:  stateVecReal[indexUp] < aR x RU — al x IU — bR+ RL — bl x I L
11:  stateVecImaglindexUp| + aR *x IU + al x RU — bR+ L + bl * RL
12:  stateVecReal[indexLo] +— bR+ RU — bl * IU + aR+ RL + al xIL
13:  stateVecImaglindexLo] < bR+ IU + bl * RU + aR* IL — al * RL
14: end for
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To embody the specific method of SIMD optimization in more detail, in Al-
gorithm 1, we give the algorithm of the CompactUnitary function in the QuEST
simulator. It is used to describe the evolution of a single qubit from one state to
another under the action of the unitary matrix U. As can be seen from Algorithm
1, there is a large amount of data in the CompactUnitary function perform the
operations of a single multiplication, addition, and subtraction operation. where
SIMD vectorization, as a single-instruction multiple-data stream, is more suit-
able. Therefore, adding SIMD vectorization operations to these computationally
intensive function that has similar operations to the CompactUnitary function
can achieve higher calculation effect to get overall performance improvement.
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Fig. 3. SIMD vectorization.
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In selecting the SIMD instruction set, we used INTEL’s AVX2 and FMA
instruction sets and gave detailed steps for CompactUnitary function opti-
mization. As shown in Fig.3, Fig.3 (a) shows the three inline functions appear-
ing in the vectorization operation, which are used to deal with multiplication,
multiplication and addition, and data exchange. The left side of Fig.3 (b) is the
calculation operation that needs to be optimized. The right side of Fig.3 (b)
demonstrates the swap operation of positions 2 and 4. This operation needs to
be performed because it is very time-consuming to update the four variables,
such as stateRealUp multiple times in the loop, to perform the -mm_set_pd
operation. Besides, It is also essential to use data exchange for multiple updated
variables and get different operations, just as shown in Fig.3 (d). The values
of four constants, such as alphaReal in the loop are always fixed, so it is very
cost-effective to perform a simple data inversion operation before the start of the
loop, and Fig.3 (c) shows the constant data exchange and inversion operations.

3.2 Bit computing optimization

othisTask o thisBlock o indexUp O indexLo
© thisBlock * sizeBlock () thisBlock * sizeHalfBlock

+ thisTask
SUB
+ sizeHalfBlock

(6]
) 2

<< (targetQubit + 1)

>> targetQubit

START END

Fig. 4. Bit computing optimization.

QuEST has a very balanced load processing capability and has good scalabil-
ity. However, After analyzing using the Perf tool of the Linux system, we found
that most functions will perform idiv operation after being compiled into as-
sembly language occupies nearly 50% of the total function overhead. The result
of the analysis shows that the time-consuming idiv operations are concentrated
in lines 5 to 7 of Algorithm 1 (the rest of the functions with the same operations
are also applicable). It can be seen in Algorithm 1 that this part of the operation
contains division and modular remainder operations. As we all know, perform-
ing a division operation in the CPU often requires more than ten clock cycles,
and performing a modular remainder operation requires tens or even hundreds
of clock cycles, which has a significant impact on the overall performance of the
program. In contrast, bitwise operations of the integers in the CPU takes at most
one clock cycle. In the HpQC, to better improve the program’s performance, it
is essential to convert the division and modular remainder operations into bit-
wise operations as much as possible. Since the compiler does not automatically
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complete the conversion of this part of the operation, we need to optimize it
manually.

For sizeHalfBlock inline 2, it is equal to the result of the number 1 shifted
targetQubit to the left. Then thisBlock is equal to the value of thisTask
shifted targetQubit to the right. For sizeBlock, it is equal to the value of num-
ber 1 shifted left by targetQubit + 1 bit. Therefore, multiplying thisBlock
by sizeBlock equals the value of thisBlock shifted left by targetQubit +
1 bit. For thisTask modulus residual sizeHalfBlock operation. First, divide
thisTask by sizeHalfBlock and record the result as a. Then, multiply a by
sizeHalfBlock and record the result as b. Finally, use thisTask to subtract
b and get the final result. The operation of calculating the values of a and b
can be performed by bitwise operations. After the above simplification steps, the
idiv operation can be successfully eliminated. The specific operation conversion
is shown in Fig.4, starting from START following the direction of the arrow to
END to complete the entire calculation process.

3.3 Memory access optimization

Fig. 5. A architecture of CPU processor with 24 cores.

With the continuous acceleration of CPU computing, slow memory band-
width has become the main bottleneck limiting the system’s overall speed. In
CPU architectures, increasing the cache between the CPU and memory to ob-
tain higher data access speed is the key to improving system performance. As
shown in Fig.5, this is a CPU processor with 24 cores, each of which has its
L1 cache and L2 cache, and all cores share L3 cache and memory. In this CPU
architecture, the closer to the CPU, the less storage space the cache has, and
the higher the speed of the CPU accessing memory. However, under normal
circumstances, most programs cannot improve the system performance due to
inadequate cache statuses such as insufficient cache data reuse and frequent cache
line replacement. Therefore, solving the problem of the efficient and reasonable
use of limited cache space is the key to improving system performance.

Innovative data structure In the QuEST, the state vector is divided into
the real part vector and imaginary part vector, and continuous address space is
allocated according to specific needs, facilitating the sequential access to data.
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However, in some quantum computing operations, a relatively long step-by-step
data access operation is usually required, which is very unfriendly for a limited
size cache. As shown in the left of Fig.6, for the real part vector and the imaginary
part vector, we need to obtain the values at the indexup and indexlo positions
in the real part and the imaginary part vector, and then perform the calculation.
Suppose the step between indexup and indexlo is X, and the length of X is
much larger than the length of the cache line in the current CPU. It can be
seen from the left of Fig.6 that the cache line replacement operation needs to be
performed four times to obtain the values at four different positions. As we all
know, the cache in CPU accesses data in units of the length of a cache line, as
for the data exceeding the length of the cache line, it has to perform replacement
operations, which is very unfavorable for the performance of the cache.

Real Imag Real Imag

I l Struct HpQC {
Datatype Real;

Datatype Imag;

IndexUp IndexLo

. X Struct QuEST { )
Real Datatype * Real; i .

Datatype * Imag;
X . }
Imag . QuEST statevector; IndexUp IndexLo

QuEST HpQC (our)

}
HpQC * statevector;

Fig. 6. Data structure of QuEST and HpQC.

To solve this problem, in the developed HpQC, we introduced a simple and
efficient data structure. As shown in the right of Fig.6, the real part vector
and the imaginary part vector, which were stored in two consecutive stages, are
compressed into a structured vector containing the real part and the imaginary
part. In this way, initial values stored respectively in the indexup position of the
real vector and the imaginary vector can be merged into the indexup position of
the new structure vector. Now, the indexup position only needs to be accessed
once, and the real and imaginary values can be continuously obtained. Compared
with QuEST, the merged data storage structure can better achieve cache data
reuse. This is because a cache line access operation can simultaneously obtain
the real and imaginary values at the same position, reducing replacements of the
cache line.

Store byte alignment In modern CPU architecture, the cache plays a
significant role between CPU and memory, which can speedup data transmission
and minimize CPU waiting time. When accessing data, the cache is usually
carried out with a cache line as the unit length. At present, the size of most cache
lines is 64 bytes. Sequentially stored data can better utilize the advantages of
cache data reuse when acquiring data in the cache line unit length. However, the
situation shown in Fig.7 (a) will sometimes happen when the data that is not
byte-aligned is acquired with the cache line. The figure shows that the Double
data that was originally acquired only once needs to be operated twice without
byte alignment. This is because a single cache line fails to obtain the required



10 Haodong Bian et al.

data fully, so the cache has to obtain the remaining data through the cache line
replacement operation. Fig.7 (b) shows the data alignment operation, and we
can find that the data under byte alignment no longer has access across the

cache line. This dramatically improves the efficiency of data access.

Algorithm 2 HpQC compactUnitary

Input: sizeHalfBlock, indexUp, indexLo, RU, RL, IU, IL, numTasks, stateVec[],
mid_ansl, mid_ans2, mid_ans3, mid_ans4, mid_ans5, mid_ans6, mid_ans0, al, aR, bl,

bR
1: mid_ansl <+ -mm256_set_pd(aR,bR,bR, aR)
2: mid-ans2 + -mm256_permute_pd(mid_ansl,0b0101)
3: mid_ans2[0] < —mid_ans2[0] , mid_-ans2[3] + —mid_ans2[3]
4: mid_ans3 < _mm256_set_pd(al,—bl,bl, —al)
5: mid-ansd + -mm?256_permute_pd(mid_ans3,0b0101)
6: mid_ansd[0] < —mid_ans4[0] , mid_ansd[3] + —mid_ansd[3]
7: for i < 0 to numTasks in parallel do
8: indexUp + ((i >> targetQubit) << targetQubit) + i
9:  indexLo < indexUp + sizeHal f Block
10:  _mm_prefetch((charx)&stateVeclindexLo + 64], MM _HINT_T1)
11:  _mm_prefetch((charx)&stateVeclindexUp + 64], MM _HINT_T1)
12:  RL <+ stateVec[indexLol.real , IL < stateVec[indexLo].imag
13:  RU < stateVecfindexUp).real , IU < stateVec[indexUp].imag
14:  mid-ansb < -mm256_set_pd(IU, RU, IU, RU)
15:  mid-ans6 <+ -mm?256_set_pd(IL, RL,1L, RL)
16:  mid_ans0 < -mm256_mul_pd(mid_ansl, mid_ansb)
17: mid-ans0 < -mm256_fmadd_pd(mid_ans3, mm256_permute_pd(mid_ans5,

060101), mid_ans0)
18:  mid_ans0 + -mm256_fmadd_pd(mid_ans2, mid_ans6, mid_ans0)

19:  mid-ans0 < -mm256_fmadd_pd(mid_ans4, mm256_permute_pd(mid_ans6,

0b0101), mid_ans0)

20:  stateVeclindexUp)].real — mid_ans0[0],stateV eclindex Lo].imag

mid_ans0[1]

21:  stateVec[indexLol.real <+ mid_.ans0[2] , stateVec[indexUpl.imag

mid_ans0[3]
22: end for

+—

<

Data software prefetch In actual program processing, data transmission
is also quite time-consuming. If the program can achieve in advance to the data
to be used in the cache in the future, the data transmission will be reduced
inevitably. In reality, CPU can prefetch part of the data into the cache at the
same time as the calculation to mask the time-consuming data transmission.
However, this requires the program itself to have high local accessibility. By
modifying the state vector structure, our program is more suitable for using
data prefetching to get better performance. The innovative structure puts the
elements that need to be calculated in adjacent positions, which is very friendly

to cache with the advantages of spatial locality.
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In the HpQC, although the hardware prefetching method cannot achieve the
expected effect, we use the software prefetching method for data prefetching. In
terms of technology, we uses the _.mm_prefetch function of the SSE instruction
set to prefetch the data. According to the experimental results, we found that
prefetching the data into the cache other than the L1 cache has a better effect.

Double Double
Cache Line 0| Cache Line 1 Cache Line 0| Cache Line 1

(a) Not Aligned (b) Aligned

Fig. 7. Data alignment operation.

To further reflect the optimized program details, we have given an optimiza-
tion algorithm, as shown in Algorithm 2.

4 Performance evaluation

4.1 Device Information

The experimental platform was intel’s fourth-generation Haswell architecture
CPU. The frequency of this CPU is 2.30GHz, 24 cores, and the L1 cache size
is 32KB, the L2 cache size is 256KB, the L3 cache size is 30720KB, DRAM
memory size is 128GB, Single max GFlops is 1766.4, Double max GFlops is
883.2. As for the SIMD instruction set, we selected the AVX2 instruction set
and FMA instruction set supported by the CPU. Second, we chose two different
compilers, Intel and GNU, as the source code compilation environment, because
the QUEST simulator also supports these two compilers. This can reflect the
optimization effect of the HpQC simulator in different compilation environments
in many aspects. Finally, the fast and efficient OpenMP parallel language is
used for multi-thread implementation.

4.2 Test program selection

QFT is usually used as a benchmark program for the optimization of high-
performance quantum computing. This is because it not only has an excellent
structural law but also has a reasonable calculation regularity. Quantum random
circuit simulation is usually more random and has no rules to find, so it is more
suitable for testing the universality of a quantum computing simulator. In the
experiment, the benchmark test programs consist of a QFT of 21 to 30 qubits
and a random quantum circuit of 30 qubits. Besides, the experiment thoroughly
considered the versatility of the test program. In the simulator’s optimization
process, we did not make any particular optimization for any specific program,
so the optimization operation is more versatile in quantum computing.
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4.3 Performance comparison and analysis
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Fig. 8. QFT performance of 21 to 30 qubits and random circuit performance of 30
qubits.

As shown in Fig.8, we demonstrate the QFT performance of 21 to 30 qubits
and compares the performance in four different states. In Fig.8, HpQC1 repre-
sents HpQC that only realizes SIMD vectorization; HpQC2 represents HpQC
that realizes SIMD vectorization and calculation optimization; HpQC3 repre-
sents HpQC that implement all optimization methods.

In the same compilation environment, we can find that HpQC1 has a lower
time overhead than QuEST. This is because sufficient vectorization can execute
SIMD faster to achieve higher performance. Secondly, HpQC2, which achieves
calculation optimization, has a significant performance improvement, because
compared to the time-consuming multiplication and division operations, the use
of fast and efficient bitwise operations can significantly reduce the CPU calcu-
lation time. Finally, HpQC3, which implements memory access optimization,
has a higher calculation speed than HpQC2, because the innovative data struc-
ture can better utilize the spatial locality of the cache. For different compilation
environments, the performance effects of HpQC vary since different compilers
automatically optimize the code in different ways. What is exciting is that both
of them have the same performance improvement trend. We can also find that
the QFT performance of 21 and 22 qubits has excellent performance because
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its space overhead approximates the size of the cache space, and smaller mem-
ory consumption is more suitable for taking advantage of spatial locality of the
cache.

As shown in Fig.8 lower right corner, we demonstrated a 30-qubit random
quantum circuit by using the GNU and INTEL compilers. First of all, HpQC1
has a pronounced speed increase compared to QuEST, which shows that SIMD
vectorization plays a better role in stochastic quantum circuit optimization. Sec-
ondly, HpQC2 has a higher speedup than HpQC1, which means that computa-
tional optimization is also applicable to random quantum circuits. Finally, the
performance brought by memory access optimization is also very significant,
which means that the innovative data structure plays a better effect on random
circuits.

Table 1. Speedup of HpQC compared with QuEST.

SpeedUp(GNU) SpeedUp(INTEL)

QFT-21 3.64x 3.22x
QFT-22 3.18x 2.93x
QFT-23 1.91x 1.71x
QFT-24 1.75x 1.75x
QFT-25 1.97x 1.77x
QFT-26 1.76x 1.75x
QFT-27 1.96x 1.78x
QFT-28 2.67x 1.73x
QFT-29 2.32x 1.72x
QFT-30 2.16x 1.78x
QFT Harmonic mean 2.20x 1.91x
Random-30 1.74x 1.51x

Note: SpeedUp = (QuEST runing times) / (HpQC runing times)

As shown in Table 1, the QFT of 21 and 22 qubits with different compilers
have achieved performance improvements that approach or even exceed 3x ac-
celeration ratios. Besides, QFT has achieved performance improvements of 2.20x
and 1.91x harmonic average speedup with the GNU and INTEL compilers, re-
spectively. With the INTEL compiler, we can also see that QFTs of more than 22
qubits are less affected by the number of qubits and have a stable performance
improvement, which means that our optimization will not cause performance
degradation with the increase of qubits. In a 30-qubit random quantum circuit,
HpQC achieves performance improvements of 1.74x and 1.51x acceleration ra-
tios with GNU and INTEL compilers compared to QuEST, respectively. This
shows that the HpQC simulator is suitable for the simulation of random quantum
circuits and maintains the best state.
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5 Conclusion

This paper presents an HpQC simulator. On a single node, the methods of SIMD
vectorization, calculation, and memory access optimization are used to achieve
a more efficient performance. Moreover, it has more stable performance and
will not cause performance loss with the increase of qubits. Besides, we also
found that qubit operations close to the cache storage space can achieve higher
performance. In the future, we will continue to conduct multi-node tests further
to verify the scalability of HpQC.

Acknowledgment

This paper is partially supported by the National Natural Science Foundation
of China (No.61762074, No.61962051), National Natural Science Foundation
of Qinghai Province (No.2019-ZJ-7034). ”Qinghai Province High-end Innova-
tive Thousand Talents Program - Leading Talents” Project Support. The Open
Project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai
University (2020-ZZ-03).

References

1. Bennett, C. H., Divincenzo, D. P. (2000). Quantum information and computation.
Nature, 404(6775), 247-255.

2. Douglas, B. L., Wang, J. (2009). Efficient quantum circuit implementation of quan-
tum walks. Physical Review A, 79(5).

3. Cleve, R., Watrous, J. (2000). Fast parallel circuits for the quantum Fourier trans-
form. foundations of computer science.

4. Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, 1., Cammarota, R.
(2019). Post-Quantum Lattice-Based Cryptography Implementations: A Survey.
ACM Computing Surveys, 51(6).

5. Bruss, D., Erdelyi, G., Meyer, T., Riege, T., Rothe, J. (2007). Quantum cryptogra-
phy: A survey. ACM Computing Surveys, 39(2).

6. Elliott, C., Pearson, D., Troxel, G. D. (2003). Quantum cryptography in practice.
acm special interest group on data communication.

7. Pudenz, K., Lidar, D. A. (2013). Quantum adiabatic machine learning. Quantum
Information Processing, 12(5), 2027-2070.

8. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S. (2017).
Quantum Machine Learning. Nature, 549(7671), 195-202.

9. Ying, M. (2010). Quantum computation, quantum theory and AI. Artificial Intelli-
gence, 174(2), 162-176.

10. Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. 2019. QURE: Qubit
Re-allocation in Noisy Intermediate-Scale Quantum Computers. In Proceedings of
the 56th Annual Design Automation Conference 2019 (DAC ’19). Association for
Computing Machinery, New York, NY, USA, Article 141, 1-6.

11. Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari,
Nhung Hong Nguyen, and Cinthia Huerta Alderete. 2019. Full-stack, real-system
quantum computer studies: architectural comparisons and design insights. In Pro-
ceedings of the 46th International Symposium on Computer Architecture (ISCA
’19). Association for Computing Machinery, New York, NY, USA, 527-540.



HpQC: A new efficient quantum computing simulator 15

12. Ji Liu, Gregory T. Byrd, and Huiyang Zhou. 2020. Quantum Circuits for Dynamic
Runtime Assertions in Quantum Computation. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 1017-1030.

13. Poulami Das, Swamit S. Tannu, Prashant J. Nair, and Moinuddin Qureshi. 2019.
A Case for Multi-Programming Quantum Computers. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’52).
Association for Computing Machinery, New York, NY, USA, 291-303.

14. Li, R., Wu, B., Ying, M., Sun, X., Yang, G. (2020). Quantum Supremacy Circuit
Simulation on Sunway TaihuLight. IEEE Transactions on Parallel and Distributed
Systems, 31(4), 805-816.

15. Gutierrez, E., Romero, S., Trenas, M. A., Zapata, E. L. (2010). Quantum computer
simulation using the CUDA programming model. Computer Physics Communica-
tions, 181(2), 283-300.

16. Mahdi Aminian, Mehdi Saeedi, Morteza Saheb Zamani, and Mehdi Sedighi. 2008.
FPGA-Based Circuit Model Emulation of Quantum Algorithms. In Proceedings of
the 2008 IEEE Computer Society Annual Symposium on VLSI (ISVLSI ’08). IEEE
Computer Society, USA, 399-404.

17. Feynman, R. P. (1999). Simulating physics with computers. International Journal
of Theoretical Physics, 21(6), 133-153.

18. Thomas Héaner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias Troyer.
2016. High performance emulation of quantum circuits. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’16). IEEE Press, Article 74, 1-9.

19. Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal
Finkel, Yuri Alexeev, and Frederic T. Chong. 2019. Full-state quantum circuit sim-
ulation by using data compression. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 80, 1-24.

20. Steiger, Damian S., Thomas Héner, and Matthias Troyer. “ProjectQ: An Open
Source Software Framework for Quantum Computing.” Quantum 2 (2018): 49.
Crossref. Web.

21. Smelyanskiy, M., Sawaya, N. P., Aspuruguzik, A. (2016). qHiPSTER: The Quan-
tum High Performance Software Testing Environment.. arXiv: Quantum Physics,.

22. Thomas Héner and Damian S. Steiger. 2017. 0.5 petabyte simulation of a 45-
qubit quantum circuit. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC '17). Association
for Computing Machinery, New York, NY, USA, Article 33, 1-10.

23. Jomes, T., Brown, A., Bush, I., Benjamin, S. C. (2019). QuEST and High Perfor-
mance Simulation of Quantum Computers. Scientific Reports, 9(1).

24. Weinstein, Y. S., Pravia, M. A., Fortunato, E. M., Lloyd, S., Cory, D. G. (2001).
Implementation of the Quantum Fourier Transform. Physical Review Letters, 86(9),
1889-1891.

25. Guo, C., Liu, Y., Xiong, M., Xue, S., Fu, X., Huang, A., ... Wu, J. (2019). General-
Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the
Quantum Supremacy Frontier. Physical Review Letters, 123(19).



