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Abstract—This work proposes an economic dispatch scheme for 

the energy robust optimal in microgrid. This scheme includes a 

two-stage robust optimization model which accounts for the 

uncertainties in the renewable energy source (RES) generation 

and the load demand using extreme scenarios strategy produced 

by the rules. The result of the inner function in the two-stage 

robust optimization is to generate extreme scenarios, and the 

result of the outer function is to optimize the system in the 

scenarios. The optimization model could be transformed into a 

single layer nonlinear mathematical structure through the 

above strategy. Moreover, the relationship between the cost and 

the demand response load adjustment factor is also analyzed. 

Finally, the impact of different purchase and sale price on 

system cost is analyzed. Numercial cases show the effectiveness 

of the model and solution strategy. In addition, the results also 

indicate that the demand response load adjustment factor 

affects the cost of the system and the satisfaction of users, which 

can provide references to microgrid investors and distribution 

system operator for energy planning and the design of incentive 

mechanism, respectively. 
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I. INTRODUCTION 

A variety of distributed energy, energy storage and load 
are integrated into the energy node, and its highly autonomous 
nature and connection to the distribution network is 
accomplished through coordinated internal operations[1-3]. 
Furthermore, an increasing number of renewable energy is 
connected to the grid for improving the environmental 
problems and energy crisis. However, the uncertainty of 
renewable energy increases the risk of system scheduling.  
Therefore, ensuring the minimum operating cost of energy 
system is widely referred to as the difficulty of energy 
management optimization problem with the uncertainties of 
renewable energy[4]. The microgrid economic operation 
model with multiple distributed energy sources is established 
in [5]. Energy storage system and rotating reserve method are 
used for economic dispatch of energy system, in which the 
dispatch results are more realistic due to the increase of 
multiple system constraints[6]. Distributed energy, load and 
energy storage units have contributed to the construction of 
microgrid operation optimization framework, in which energy 
storage units are regarded as generalized demand side 
resources[7]. In the aforementioned energy economic dispatch 

Currently, energy robust optimization considering uncertain 
factors is mainly as follows. A microgrid stochastic 
optimization model for electric vehicles and renewable energy 
is established in [8]. An adaptive algorithm that takes into 
account the uncertainty of load, electricity price and 
renewable energy is proposed in [9]. A method using Monte 
Carlo simulation to solve the problem of uncertainty scenarios 
and using mixed integer linear programming to solve the 
model is proposed in [10]. The power flow constraints in the 
microgrid are further considered in [11]. By combining the 
stochastic programming method with the conditional risk 
constraint method, the expected return under the 
corresponding scenario can be no less than a given confidence 
level. This method can achieve the purpose of reducing risk[12]. 
Among the above research methods, whether random 
planning or scenario analysis, it would lead to inaccuracy of 
the model. Robust optimization[13] is used as a common 
method for dealing with uncertain optimization problems. It is 
not necessary to know the probability distribution of uncertain 
data, and the purpose of reducing risk is achieved by 
establishing a set. 

A two-stage robust optimization model and an extreme 
scenario solving strategy are established in this paper. 
Extreme scenarios will be solved in the first-stage of 
optimization. The optimal economic energy scheduling 
scheme under extreme scenarios is obtained by the second-
stage optimization. The demand response load adjustment 
factor is added to the model, which can provide reference for 
the regulation of the microgrid dispatcher. In addition, through 
comparative analysis, the impact of electricity price on system 
operating costs is obtained. 

II. MATHEMATICAL MODELING OF ENERGY SYSTEM 

In this section, we formulate models for the energy 

system in which the total operational cost is considered.  

A. Controllable distributed generators(CDG) 

It is assumed that CDG owns MTs here. The objective of 
CDG can be formulated as follows[14]. 

 ( ) ( )MG MG MGC t n P t t    (1) 

 min max( )MG MG MGP P t P    (2) 



where ( )MGC t  is the operational cost of MT at time t , 

represented as the linear function. 
MGn  is the coefficient of 

the operational cost. ( )MGP t  is the power out of MT, t  is 

the time interval of operation, which equals to 1. 
min

MGP /
max

MGP  

are the min/max generation of MT. The power out of MT in 
rach time period should satisfy the power and ramp constrains 
as (2). 

B. Energy storages(ESS) 

The schematic diagram of charging and discharging of 

energy storage unit is shown in "Fig.1", ( )E t  is the current 

status of ESS. ( )EP t  is the charge and discharge power. 
minE / maxE  is the min/max power of ESS. The charging and 

discharging process is satisfied: 

 ( ) ( 1) ( )EE t E t P t t      (3) 

The cost function of ESS in this chapter as follows: 

 ( ) [ ( ) (1/ ) ( )]ch dis

E E ch E dis EC t n P t P t t      (4) 

where ( )EC t  is the operational cost of ESS. 
En  is the 

coefficient of the cost in ESS. 
ch  is the efficiency of 

charging. 1/ dis  is the efficiency of discharging. ( )ch

EP t /

( )dis

EP t  is the power of charging and discharging. Then 

equation (4) can be described as: 

 ( ) ( 1) ( ) 1/ ( )ch dis

ch E dis EE t E t P t t P t t         (5) 

The constraints of the cost function can be shown as: 

 min max( )E E t E    (6) 

 max max0 ( ) ( ) ,0 ( ) [1 ( )]dis ch

E s E E s EP t U t P P t U t P       (7) 

 (0) ( )E E T   (8) 

where ( )sU t  indicates the state of the ESS at time t. 

( ) 1sU t   indicates that the ESS is charging. On the contrary, 

 

maxE

minE

( )E t

( )E t

( 1)E t 

 

Figure 1.  Schematic diagram of charging and discharging of energy 

storage unit 

( ) 0sU t   indicates that the ESS is discharging. 
max

EP  is the 

maximum charging/discharging power allowed by ESS. 

C. Load modeling 

In this section, the full-time demand response load(FDR) 
is taken as the object of optimal scheduling based on the 
existence of the translatable load in the system. The 
operational cost of full-time demand response load is given by: 

 ( ) ( )D D DC t n P t t    (9) 

 
1

( ) 0
TN

D

t

P t t DR


     (10) 

  [1 ( )] ( ) ( ) [1 ( )] ( )D D D D Dt P t P t t t P t         (11) 

where ( )DC t  is the cost of FDR. ( )DP t  is the actual 

operational power. 
Dn  is the coefficient of the FDR 

operational cost. 
* ( )DP t  is the expected operational power. 

The coefficient of the operational full-time demand response 

load is 
D , represented as consumer satisfaction. 

D. Exchanged power model 

The exchange cost is defined as the sum of expenditure 
and income produced by the power exchange with the main 
grid. The following model can be written as[15]: 

 ( ) ( ) ( )M M MC t n t P t t     (12) 

 ( ) ( ) ( )M b sP t P t P t     (13) 

 ( ) ( ) ( ) ( ) ( ) ( )ch dis

M E H MG E PVP t P t P t P t P t P t        (14) 

 max max0 ( ) ( ) ,0 ( ) [1 ( )]b M M s M MP t U t P P t U t P       (15) 

where ( )MP t  is the power exchanged with the 

distribution network. ( )PVP t  is the power out of photovoltaic 

units (PV). ( )bP t / ( )sP t  is the power that the system 

buys/sells from the distribution network. ( )Mn t  is electricity 

price. 

III. MATHEMATICAL MODELING OF ROBUST ENERGY 

MANAGEMENT 

In this section, we formulate a two-sage robust model for 
energy optimization in which the uncertainties of PV and load 
demand are simultaneously considered. 

A two-stage energy robust optimization model 
considering the uncertainty sets of PV and load is as 
follows[16]: 

 1
( , )

max min
y x uu

C C



U

  (16) 
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 2 1
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= min
y x u

C C


（ ）  (18) 

where x  is a collection of binary variables for (7), (15). y  

is output variable in the optimization result, ( )LP t  is 

conventional load. 
1C  is the first-stage of optimization. C

is deterministic optimization function. 
2C  is the second-

stage of optimization.  
Considering the actual operation of the power grid and the 

constraints of the comprehensive supply and demand balance 
(14), it can be seen that each of the PV units is taken as the 
lower bound of the fluctuation interval, and when the load unit 
is taken as the upper bound of the fluctuation interval, the 
system can better conform to the characteristics of the extreme 
scenarios. The uncertainty set can be rewritten as follows:  
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where 
PVB ，

HB  is represented as the feature of selected 

scenario. ( )PV t , ( )H t  is the error of uncertain value. 
PV ，

H  represents the adjustable selection coefficients of 

uncertain scenario in the day-ahead scheduling scheme and 
the number of uncertain scenarios selected in the total time 

period.  
PV ，

H  represent the error proportionality 

coefficients of uncertain sets, respectively. Redefining the 
uncertain scenario set by selecting the upper and lower bounds 
of variables can greatly reduce the number of scenario 
traversal. 

IV. SOLUTION STRATEGY 

A solution strategy to obtain the extreme scenario 
sequence by traversing the comparison cost will be presented 
in this section. The specific solution process is as "Fig.2": 
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Figure 2.  Algorithm flowchart 

where { ( ), ( )}PV z H zu i u i  represents each time the sequence 

set of PV and load unit which are selected, 
zi  represents the 

sequence combination from 1 to 
TN , and the size of the 

sequence is equal to
PVB  and

HB  respectively. By 

comparing the sequence sets corresponding to the maximum 

cost stored at each time, when the sequence sets get the 

regulated parameters of the specified uncertain sets, the 

qualified sequence sets and the optimal solution of the 

corresponding objective function can be solved and the 

optimal coordination scheme in the extreme scenario can be 

obtained. 

V. EXAMPLE ANALYSIS 

Taking the system structure diagram shown in "Fig.3" as 
an example. 

A. Economic Optimal Scheduling Scheme Simulation 

Analysis 

The system operation parameters are from [15], the other 
parameters are shown in Table 1. 

DS

MTPV

ESS FDR LOAD

Controller

 

Figure 3.  System structure diagram 



TABLE I OPERATIONG PARAMETERES 

Untis Parameter Value 

FDR 
DP  20% 

Uncertain set 

adjustment 
parameter 

PV  6 

H  12 

Uncertain set error 
scale factor 

PV  0.9 

H  1.5 

The price of a city day-ahead distribution network and the 
day-ahead demand response load power of each period are 
shown in [15]. The day ahead predicted power of PV and load 
unit is also shown in [15]. The simulation results are as 
follows: 

 

Figure 4.  Actual dispatch load power curve 

 

Figure 5.  Actual dispatching photovoltaic power generation curve 

 

Figure 6.  Energy storage unit charging / discharging power 

 

Figure 7.  Output power of micro turbine & the change power of grid 

distribution net work 

 
Figure 8.  Planned power of actual / expected demand response load 

dispatch 

From the simulation results, it can be seen that the 
minimum power output of micro-gas turbine is 80kW, the 
maximum power output is 800KW from 8 to 23, and the 
minimum power output is from 24. The output power of PV 
unit is zero from 1 to 7 and 24, and according to the price data, 
it can be seen that the electricity price is lower than the 
operation cost of MT at this time. During this period, MT 
operate with minimum power to meet the objective of optimal 
operating costs. During the period of 8-23, PV units began to 
produce power, and the increase of electricity price during this 
period made MT output the maximum power to sell power to 
the distribution network for earning revenue and achieve the 
purpose of reducing operating costs. As can be seen in "Fig.6", 
charging in period 2, 3 and 24 and discharging in period 9 to 
11 can also be carried out according to the electricity price, so 
that the electricity in the lower period can be stored in the 
energy storage unit to meet the demand of the system during 
the peak period of the load. In " Fig.8", it can be seen that the 
demand load response adjustment coefficient exists, which 
makes it possible to adjust the load to a lower demand period 
while satisfying the user satisfaction and the total demand 
response load constraints, so as to meet the optimization 
purpose. The effectiveness of the optimization model and the 
solution strategy proposed in this chapter is verified by 
simulation. 

B. Simulation comparison and analysis of the impact of 

demand load response coefficient on the system 

In this section, different demand load response 
coefficients are adopted to analyze the impact on the system 
through simulation results 

 
Figure 9.  Optimized scheduling results when the demand response load 

adjustment factor is 0.05 



 
Figure 10.  Optimized scheduling results when the demand response load 

adjustment factor is 0.4 

In "Fig.10", the actual demand response dispatch load and 
the expected demand response load in periods 1 to 7 and 9 to 
11 are quite different. Same in "Fig.10", when the demand 
response adjustment coefficient increasing, the system 
optimization process allocates the demand response load in 
high load period to low demand period. When the coefficient 
value is 0.05, the adjusted power is small. The simulation 
results of the two cases can also observe that the change of 
other variables is small. 

C. Simulation and Analysis of the Impact of Electricity 

Price on Operation Cost 

The same period price for convenience comparison is 
adopted in this case, but the simulation conditions of purchase 
and sale price are different. The simulation results are shown 
in "Fig.11". Compared with the consideration of uncertainty 
and only relying on interactive power to balance costs, the 
optimization result in this chapter is more stable.  

VI. SUMMARY 

This paper aims to solve the economic dispatch problem 
for energy node with uncertainties. The main advantages of 
these strategies include the following. 

1) The designed extreme scenario solving strategy can 
effectively obtain the required scenario values in the two-side 
robust optimization. Compared with the dual programming 
method, the solution dimension is reduced. 

2) The adjustment factor of the demand response load is 
introduced, and the commonly used upper and lower bounds 
are replaced by the coefficient, which can provide a reference 
for the operator. 

3) The characteristics of purchasing electricity price and 
selling electricity price are introduced into the model. By 
comparing with other optimization models, the cost change is 
more gradual in our model. 

 
Figure.11 Size and proportion analysis of electricity price 
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