
EasyChair Preprint

№ 1053

GBDT, LR & Deep Learning for Turn-based

Strategy Game AI

Like Zhang, Hui Pan, Qi Fan, Changqing Ai and Yanqing Jing

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 28, 2019

	
	

GBDT, LR & Deep Learning for
Turn-based Strategy Game AI
Like Zhang, Hui Pan, Qi Fan, Changqing Ai, Yanqing Jing

Turing Lab, Tencent Inc.
{likezhang, qfan, changqingai, frogjing}@tencent.com, hpan2010@my.fit.edu

Abstract-This	 paper	 proposes	 an	 AI	 fighting	
strategies	 generation	 approach	 implemented	 in	
the	 turn-based	 fighting	 game	 StoneAge	 2	 (SA2).	
Our	 research	 aim	 is	 to	 develop	 such	 AI	 for	
choosing	the	logical	skills	and	targets	to	the	player.	
The	approach	trained	the	logistical	regression	(LR)	
model	 and	 deep	 neural	 networks	 (DNN)	 model,	
individually.	 And	 combined	 both	 output	 at	
inference	 process.	 Meanwhile,	 to	 transform	 the	
features	 into	 a	 higher	 dimension	 binary	 vector	
without	 any	 manual	 intervention	 or	 any	 prior	
knowledge,	 we	 put	 all	 category	 features	 into	
Gradient	Boosted	Decision	Tree	(GBDT)	before	LR	
component.	The	main	advantage	of	this	procedure	
is	 the	 approach	 combines	 the	 benefits	 of	 LR	
models	 (memorization	 of	 feature	 interactions)	
and	 DL	 (generation	 the	 unseen	 feature	
combination	 through	 low-dimensional	 dense	
feature)	 for	 the	 AI	 fighting	 system.	 In	 our	
experiment,	 we	 evaluated	 our	model	 with	 some	
other	AI	strategies	(Reinforcement	Learning	(RL),	
GBDT,	 LR,	 DNN)	 to	 against	 a	 robot	 script.	 The	
results	shown	that	the	players,	participating	in	the	
experiment,	 are	 capable	 of	 using	 reasonable	
strategic	 skills	 on	 the	 different	 targets.	 As	 a	
consequence,	the	win	rate	(versus	with	the	robot	
script)	 of	 our	 system	 is	 higher	 than	 the	 others.	
Finally,	 we	 productionized	 and	 evaluated	 the	
system	on	SA	2,	a	commercial	mobile	turn-based	
game.		

Keywords	
Machine	 Learning,	 Logistical	 Learning,	 Gradient	 Boosted	
Decision	 Tree,	 Deep	 Neural	 Network,	 Reinforcement	
Learning,	turn-based	games;	

1. Introduction	
Since	AlphaGo	got	some	historic	successes	in	the	couple	of	last	
years,	 reinforcement	 learning	 and	 deep	 neural	 network	 has	
opened	a	new	era	for	the	game,	more	and	more	AI	technology	
has	been	applied	to	the	game	field.	As	early	as	2013,	DeepMind	
demonstrates	 that	 a	 convolutional	 neural	 network	 can	 learn	
successful	control	policies	from	raw	video	data	in	complex	RL	
environments	 [18][19][20][21][22][23].	 Recently,	 StarCraft		
becomes	 a	 new	 challenge	 for	 deep	 reinforcement	 learning	
research	 [2].	Comparing	 to	 the	aged	Atari	games	which	were	
built	 upon	 limited	 action	 choices[24],	 the	 action	 space	 in	
current	commercial	computer	games	are	vase	and	diverse,	the	

player	 selects	 actions	 among	 a	 combinatorial	 space	 of	
approximately	hundreds	of	possibilities	leading	to	a	rich	set	of	
challenges.	And	those	challenges	have	not	been	overcome	yet.	
These	 previous	 research	 efforts	 suggested	 developing	 an	
approach	for	a	specific	goal	in	game	is	more	feasible	than	trying	
to	build	a	general	purpose	AI	model.		
In	this	paper,	we	design	a	system	that	when	player	temporary	
leaving	or	offline,	the	system	can	choose	the	skills	and	apply	it	
on	 the	 target,	 reasonably.	Meanwhile,	we	productionized	and	
evaluated	the	system	on	a	mobile	turn-based	game	StoneAge2	
[1].		
StoneAge	2	is	a	turn-based	strategy	game	in	which	players	will	
build	their	own	group	of	monsters,	deciding	building	strategies	
by	distributing	“building	points”,	and	arrange	the	combination	
of	monsters	to	form	up	the	line	in	battles.		fighting	part	is	one	
of	the	most	important	part	for	entertaining	players	(Fig.	1).	In	
our	game,	each	combat	includes	twenty	thirty-seconds	rounds.	
And,	in	each	round,	the	play	must	choose	a	skill	from	the	skill	
list	and	apply	this	skill	to	a	target	(the	target	could	be	our	side	
or	the	opponent)	based	on	the	different	situations.		

	
Figure	1,	screenshot	of	SA	combat	board,	right	side	is	the	
skill	list,	left	top	is	the	opponent	side,	left	bottom	is	the	

player	side.	
	
There	 are	 two	 different	 scenarios	 for	 the	 battles:	 PvE(Boss	
Battle)	and	PvP	(Player	vs	Player).	In	the	PvE	scenario,	usually	
game	developers	have	to	create	different	behavior	scripts	 for	
the	NPCs	(the	Boss)	and	make	sure	the	script-defined	behaviors	
will	give	some	challenges	for	players.	While	in	PvP	scenario,	in	
most	cases	there	won’t	be	any	automated	behavior	 for	either	
side	since	player	themselves	are	expected	to	make	all	the	moves.	
These	approaches	work	well	 for	 traditional	 computer	games,	
but	exhibit	drawbacks	for	mobile	games	like	StoneAge	2.	The	
major	problems	include:	
- Mobile	games	have	much	shorter	development	cycle	than	

traditional	 computer	 games.	 Designers	 expect	 a	 simple	

	
	

solution	 to	 create	 an	 AI	 for	 the	 NPC,	 not	 complicated	
action	scripts.	

- For	mobile	game	players,	there	are	many	reasons	they	can	
go	offline.	For	example,	a	player	in	a	battle	could	be	simply	
waiting	 in	 the	 line	 for	 bus.	When	 the	 bus	 is	 coming,	 he	
could	 just	turn	off	 the	game	and	forget	about	the	battle.	
The	 unpredictable	 behavior	 from	 mobile	 game	 players	
bring	 extremely	 bad	 gameplay	 experience	 for	 PvP	
scenarios,	 and	designers	 are	 eager	 to	 find	a	 solution	by	
replacing	“offline”	players	with	certain	AI	models.	

To	 solve	 the	 above	 problems,	we	 explored	 different	machine	
learning	based	algorithms	and	successfully	designed	a	mixed	
approach	into	StoneAge	2.		
At	 the	 beginning	 of	 our	 experiments,	 we	 also	 applied	 RL	
environment	on	our	game,	but	 its	performance	 is	 lower	 than	
our	expectation.	The	reason	is:	we	defined	the	percentage	of	the	
sum(HPs)	of	the	opponents	as	the	reward	function.	the	RL	AI	
tendency	use	attack	kind	skill	rather	than	others.	The	shortage	
is	that	the	assistant	role	or	the	healer	tried	to	use	the	normal	
attack	skill	instead	of	some	other	assistant	skills,	such	as	speed	
up	skill,	control	skill,	etc.	Therefore,	we	proposed	a	mix-model	
which	 combines	 decision	 tree,	 logistic	 regression	 plus	 deep	
learning	and	get	the	better	result.	The	comparison	results	have	
been	displayed	in	Section	5.	
Our	system	can	be	viewed	as	a	recommendation	system,	where	
the	 input	 query	 is	 the	 current	 battle	 status,	 such	 as	 each	
player’s	current	HP,	MP,	buff,	role	speed,	etc.	And	the	output	is	a	
ranked	list	of	skill-target	pair	by	the	scores.	The	scores	are	the	
probabilities	of	the	win-rate	of	the	player	apply	this	skill	on	the	
target.	Given	a	status,	the	system	is	to	find	the	all	legal	pairs	of	
skills	 and	 targets,	 and	 then	 rank	 these	 pairs.	 Therefore,	 the	
traditional	challenge	in	recommender	systems	is	also	present	
in	 ours,	 which	 is	 to	 achieve	 both	 memorization	 and	
generalization.	 In	 our	 case,	 generalization	 can	 be	 defined	 as	
explores	and	transitivity	the	skills	which	have	never	or	rarely	
used	in	the	past.	On	the	other	side,	memorization	is	based	on	
learning	the	frequent	co-occurrence	of	skills	and	targets	in	the	
historical	 data.	 In	 previous	 work	 by	 H.	 Cheng	 et	 al	 [3],	 a	
combination	of	wide	linear	model	and	DNN	was	proposed	that	
focuses	on	achieving	this	goal.		The	model’s	prediction	is:	

𝑃(𝑌 = 1|𝑥) = 	𝜎(𝑊,-./
0 [𝑥, ∅(𝑥)] +	𝑊.//6

0 + 𝑏)														
(1)	

where	Y	is	the	binary	class	label,	𝜎(·)	is	the	sigmoid	function,	
Wwide	 and	 Wdeep	 are	 the	 vector	 of	 all	 wide	 and	 deep	 model	
weights,	 respectively.	 ∅(x) 	are	 the	 cross-product	
transformations	of	the	original	feature	x.	And,	b	is	the	bias	term.	
This	 model	 requires	 more	 feature	 engineering	 effort	 or	 the	
prior	knowledge	to	define	the	cross-product	feature.		
In	 this	 paper,	we	 present	 the	 Tree,	 LR	&	DNN	 framework	 to	
achieve	both	memorization	and	generalization	in	one	model.	In	
the	tree	component,	we	used	GBDT	to	transform	the	categorical	
features	 into	 a	higher	dimensional,	 sparse	 space.	Meanwhile,	
inspired	by	continuous	bag	of	words	language	models	[4],	we	
learn	high	dimensional	embeddings	for	each	player	ID	and	skill	
ID	 in	 a	 fixed	 vocabulary	 and	 feed	 these	 embeddings	 into	 a	
forward	neural	network.	The	model	architecture	is	illustrated	
in	Figure	2.	

The	paper	is	organized	as	follows:	a	brief	system	overview	is	
presented	in	Section	2.	The	GBDT,	LR	and	DNN	component	will	
be	explained	in	Section	3.	 In	Section	4,	we	describe	the	three	
stages	 of	 this	 skill-target	 recommendation	 pipeline:	 data	
generation,	model	training,	and	model	serving.	In	Section	5,	we	
show	the	experiment	results	between	different	configurations.	
We	 also	 evaluated	 different	 turn-based	 combat	 strategies.	
Finally,	Section	5	presents	our	conclusions	and	lessons	learned.	

	
Figure	2,	Tree,	LR	&	DNN	model	architecture	

	

2. System	Overview		
The	 overall	 structure	 of	 our	 skill-target	 recommendation	
system	is	 illustrated	 in	Figure	3.	A	query,	which	 include	each	
player's	 information	 and	 contextual	 features,	 is	 generated	 at	
the	beginning	of	each	round.	There	are	total	20	players	in	the	
battle,	and	each	player	has	6	-	8	active	skills,	2	passive	skills.	In	
our	experiment,	we	only	considered	the	active	skills.				
	

	
Figure	3,	skill-target	recommendation	system	

architecture	demonstrating	the	“funnel”	where	candidate	
skills	are	retrieved	and	ranked	before	presenting	only	a	

few	to	the	user.	
	
Once	 the	 candidate	 generation	 system	 received	 the	 query,	 it	
retrieves	a	small	subset	of	skill-target	pairs	from	the	total	120	-	
160	candidate	pairs	based	on	some	rules,	such	as:	the	MP	of	the	
candidate	 skill	 should	 less	 or	 equal	 than	 the	predict	 player’s	
current	MP.	Some	skills	cannot	be	used	for	opponents	or	vice	
versa.	

	
	

After	reducing	the	candidate	pairs,	the	ranking	system	split	the	
features	to	the	ranks	all	skill-target	pairs	by	their	scores.	The	
scores	are	usually	P(y|x),	the	probability	of	a	player	action	label	
y	 given	 the	 features	 x,	 including	 player	 features	 (e.g.,	 attack,	
defense,	agility),	contextual	features	(e.g.,	last	attack	target,	last	
used	skill).	We	implemented	the	ranking	system	by	using	GBDT,	
LR	&	DL	framework.	

	

3. GBDT,	LR	&	Deep	Learning	
In	this	section,	we	split	our	GBDT,	LR	&	Deep	Learning	(GLD)	
model	to	three	components,	and	illustrated	each	component	in	
three	sub	sections.	

3.1 The	GBDT	Component	
In	 the	 Tree	 Component,	 we	 used	 gradient	 boosted	 decision	
trees,	 as	 illustrated	 in	 Figure	 4	 to	 transform	 features	 into	 a	
higher	dimensional,	sparse	space.	Then	trained	a	linear	model	
(LR	component)	on	these	features.	
Given	 GBDT	 training	 data	 𝑋 = {𝑥-}-<=> 	 and	 their	 labels	 𝑌 =
{𝑦-}-<=> 	with	𝑦- 	∈ {0, 1} ,	 the	 goal	 of	 this	 step	 is	 to	 choose	 a	
classification	function	F(x)	to	minimize	the	aggregation	of	some	
specified	loss	function	L(yi,	F(xi)):	

𝐹C = 	𝑎𝑟𝑔𝑚𝑖𝑛JK𝐿(𝑦-, 𝐹(𝑥-))
M

-<=

	

Gradient	 boosting	 considers	 the	 function	 estimation	 F	 in	 an	
additive	form:	

𝐹(𝑥) = 	 K 𝑓O(𝑥),
0

O<=

	

where	 T	 is	 the	 number	 of	 iteration.	 At	 each	 iteration,	 GBDT	
builds	a	regression	tree	that	fits	the	residuals	from	the	previous	
trees.	The	{fm(x)}	are	designed	in	an	incremental	fashion;	at	the	
m-th	stage,	the	newly	added	function,	fm	is	chosen	to	optimize	
the	aggregated	loss	while	keeping	{𝑓P}P<=OQ=	fixed6.		

Once	the	GBDT	training	process	finished,	we	fit	an	ensemble	of	
these	gradient	boost	trees	on	the	training	set.	Then	each	leaf	of	
each	tree	in	the	ensemble	is	assigned	a	fixed	arbitrary	feature	
index	 in	 a	 new	 feature	 space.	 These	 leaf	 indices	 are	 then	
encoded	 in	 a	 one-hot	 fashion.	 Each	 sample	 goes	 through	 the	
decisions	of	each	tree	of	the	ensemble	and	ends	up	in	one	leaf	
per	 tree.	The	sample	 is	encoded	by	setting	 feature	values	 for	
these	leaves	to	1	and	the	other	feature	values	to	0.	The	resulting	
transformer	 has	 then	 learned	 a	 supervised,	 sparse,	 high-
dimensional	 categorical	 embedding	of	 the	data.	 For	 instance,	
there	are	three	subtrees	in	the	Figure	3,	where	the	first	subtree	
has	4	 leaves,	the	second	3	leaves	and	the	third	2	leaves.	 If	an	
example	 ends	 up	 in	 leaf	 3	 in	 the	 first	 subtree,	 leaf	 2	 in	 the	
second	subtree	and	leaf	3	in	the	third	subtree.	The	output	will	
be	the	binary	vector	[0,	0,	1,	0,	0,	1,	0,	1,	0],	which	will	be	the	
input	to	LR	component.	

	
Figure	4,	gradient	boosted	decision	tree	for	transform	the	
categorical	features	into	a	higher	dimensional,	sparse	

space.	
	

3.2 The	Logistic	Regression	(LR)	
Component	
We	 expect	 the	 LR	 component	 (Figure	 5)	 can	 learning	 the	
frequent	 co-occurrence	 of	 skills	 and	 targets	 in	 the	 historical	
data.	 The	 LR	 component	 learned	 a	 supervised,	 sparse,	 high-
dimensional	categorical	embedding	of	 the	 features	generated	
from	the	tree	component.	And,	the	logistic	regression	model	of	
the	form:		

𝑦 =
1

1 + 𝑒QS	

where,	𝑊 =	𝑤U +	𝑤=𝑥= +	𝑤V𝑥V +⋯+	𝑤M𝑥M + 𝑏	
y	is	the	prediction,	x	=	[x1,	x2,	...,	xd]	is	a	vector	of	features	from	
the	tree	model,	w	=	[w1,	w2,	 ...,	wd]	are	the	model	parameters	
and	b	is	the	bias.		
	

	
Figure	5,	The	structure	of	logistic	regression	model	

	

3.3 The	Deep	Learning	(DL)	Component	
We	 utilized	 DL	 component	 in	 our	 system	 to	 explores	 and	
transitivity	the	skills	which	have	never	or	rarely	used	in	the	past.	
We	 fed	 hundreds	 of	 features	 in	 it	 with	 some	 preprocessing	
feature	engineering.	The	feature	roughly	split	evenly	between	
categorical,	 continuous	 and	 IDs.	 Despite	 deep	 component	
alleviate	the	burden	of	engineering	features	by	hand,	the	nature	
of	our	raw	data	does	not	easily	lend	itself	to	be	input	directly	

	
	

into	neural	networks.	We	still	expend	considerable	engineering	
resources	 transforming	player	 and	 skills	 into	useful	 features.	
Therefore,	we	build	a	vector	embedding	to	every	category	type	
and	normalized	each	continuous	feature.	
Embedding	Categorical	Features	
In	principle,	a	neural	network	can	approximate	any	continuous	
function	 [14,	 15]	 and	 piece	 wise	 continuous	 function	 [16].	
However,	 it	 is	 not	 suitable	 to	 approximate	 arbitrary	 non-
continuous	functions	as	it	assumes	certain	level	of	continuity	in	
its	general	form	[17].	The	continuous	nature	of	neural	networks	
limits	 their	 applicability	 to	 categorical	 variables.	 Therefore,	
naively	 applying	 neural	 networks	 on	 structured	 data	 with	
integer	 representation	 for	 category	 variables	 does	 not	 work	
well.	A	common	way	to	circumvent	this	problem	is	to	use	one-
hot	encoding,	but	it	has	two	shortcomings:	First	when	we	have	
many	high	cardinality	features	one-hot	encoding	often	results	
in	 an	 unrealistic	 amount	 of	 computational	 resource	
requirement.	 Second,	 it	 treats	 different	 values	 of	 categorical	
variables	 completely	 independent	 of	 each	 other	 and	 often	
ignores	the	informative	relations	between	them.	Therefore,	we	
learn	 high	 dimensional	 embeddings	 for	 each	 skill	 in	 a	 fixed	
vocabulary	 and	 feed	 these	 embeddings	 into	 a	 feedforward	
neural	network.	A	player’s	used	skills	history	is	represented	by	
a	variable-length	sequence	of	sparse	skill	IDs	which	is	mapped	
to	 a	 dense	 vector	 representation	 via	 the	 embeddings.	 The	
network	 requires	 fixed-sized	 dense	 inputs	 and	 simply	
averaging	 the	 embeddings	 performed	 best	 among	 several	
strategies	 (sum,	 component-wise	 max,	 etc.).	 Features	 are	
concatenated	into	a	first	layer,	followed	by	several	layers	of	fully	
connected	Rectified	Linear	Units	(ReLU)	[6].	
	

	
Figure	6,	deep	neural	network	helps	to	explores	and	

transitivity	the	skills	which	have	never	or	rarely	used	in	
the	past.	

	
Normalizing	Continuous	Feature	
Since	 the	 range	 of	 values	 of	 raw	data	 varies	widely,	 in	 some	
machine	learning	algorithms,	objective	functions	will	not	work	
properly	without	normalization.	For	example,	 the	majority	of	
classifiers	 calculate	 the	 distance	 between	 two	 points	 by	 the	
Euclidean	distance.	If	one	of	the	features	has	a	broad	range	of	
values,	the	distance	will	be	governed	by	this	particular	feature.	
Therefore,	 the	 range	 of	 all	 features	 should	 be	 normalized	 so	
that	each	feature	contributes	approximately	proportionately	to	
the	 final	 distance.	 Meanwhile,	 gradient	 descent	 converges	
much	faster	with	feature	scaling	than	without	it.	Moreover,	the	

neural	 networks	 are	 notoriously	 sensitive	 to	 the	 scaling	 and	
distribution	of	their	inputs	[9].	We	used	cumulative	distribution	
to	transform	a	continuous	feature	x	with	distribution	f	to	𝑥X	by	
scaling	the	values	such	that	the	feature	is	equally	distributed	in	
[0,	1).	The	formula	is:	

𝑥X = 		Y 𝑑𝑓
[

Q\
	

These	low-dimensional	dense	embedding	vectors	are	then	fed	
into	the	three	hidden	layers	of	a	neural	network	in	the	forward	
pass.	 Specifically,	 each	 hidden	 layer	 performs	 the	 following	
computation:	

𝑎(]^=) = 𝑓(𝑊(])𝑎(]) +	𝑏(]))	
where	 l	 is	 the	 layer	 number	 and	 f	 is	 the	 activation	 function,	
often	rectified	linear	units	(ReLUs).	a(l),	b(l),	and	W	(l)	are	the	
activations,	bias,	and	model	weights	at	l-th	layer.	We	used	the	
sigmoid	function	as	the	final	activation	function.	

3.4 Training	of	Tree	&	Deep	Model	
We	 trained	 the	 LR	 and	DNN	model	with	 two	 different	ways:		
ensemble	training	and	joint	training.	Joint	training	optimizes	all	
parameters	simultaneously	by	taking	both	the	LR	and	DNN	part	
as	well	as	the	weights	of	their	sum	into	account	at	training	time.	
The	LR	component	and	DNN	component	are	combined	using	a	
weighted	sum	of	their	output	log	odds	as	the	prediction,	which	
is	then	fed	to	one	common	logistic	loss	function.	Joint	training	
is	done	by	back-propagating	the	gradients	from	the	output	to	
both	the	wide	and	deep	part	of	the	model	simultaneously	using	
mini-batch	stochastic	optimization	[3].		
Ensemble	training	is:	individual	models	are	trained	separately	
without	knowing	each	other.	The	prediction	score	from	both	LR	
component	and	DL	component	are	combined	at	inference	time	
not	at	training	time.	The	structures	of	both	joint	training	and	
ensemble	training	are	shown	in	Fig.	7.	
In	Fig.	7,	The	model’s	prediction	for	both	ensemble	training	and	
joint	training	is:	
Ensemble	training:	
𝑃(𝑌 = 1	|	𝑥) = 	𝜎(𝑊_`

0 𝐺𝐵𝐷𝑇(𝑥) +	𝑏U)	

																																							+(1 − 	𝛼)(𝑊g>>
0 𝑎(]h) +	𝑏=)	

Joint	training:	
𝑃(𝑌 = 1	|	𝑥) = 	𝜎i𝑊_`

0 𝐺𝐵𝐷𝑇(𝑥) +𝑊g>>
0 𝑎(]h) +		𝑏Uj	

where	Y	is	the	binary	class	label,	σ(·)	is	the	sigmoid	function,	
GBDT(x)	is	the	tuple	features	generated	from	GBDT	component.	
WLR	 is	 the	 vector	 of	 all	 LR	model	weights,	 and	WDNN	 are	 the	
weights	applied	on	the	DNN’s	 final	activations	a(lf).	𝛼	is	set	 to	
0.5.	
In	the	experiments,	we	implemented	both	ensemble	and	joint	
training,	and	the	results	were	shown	in	Section	5.	
	

	
	

	
(a)	

	
(b)	

Figure	7,	(a)	LR	and	DNN	model’s	weights	are	training	
simultaneously	for	joint	training.	(b)	LR	and	DNN	model’s	

weights	are	trained	separately.	
	

4. System	Implementation	
The	 turn-based	 battle	 recommendation	 pipeline	 consists	 of	
four	stages:	data	generation,	model	training,	validation	module,	
and	model	serving	as	show	in	Figure	8.	

	
Figure	8:	turn-based	battle	recommendation	pipeline	

overview	

4.1 Data	and	Label	Generation	
In	the	training	data	generation	module,	each	player’s	parameter,	
current	 and	 previous	 round	 information,	 and	 the	 predict	
player’s	skill	list	were	used	to	generate	the	training	examples.	
The	label	is	the	battle’s	final	result:	1	if	the	player	win,	and	0	
otherwise.	 In	 order	 to	 reduce	 the	 noises	 in	 the	 positive	
examples,	we	 only	 take	 the	 battles	which	 the	 battle	 finished	
with	the	player	win	in	10	rounds	as	the	positive	example.	

4.2 Model	Training	
The	model	 structure	we	 used	 in	 the	 experiment	 is	 shown	 in	
Figure	7.	We	put	all	categorical	features	as	the	input	to	the	tree	
models.	The	tree	component	implements	non-linear	and	tuple	

feature	transformations	and	can	be	understood	as	a	supervised	
feature	 encoding	 that	 converts	 a	 real-valued	 vector	 into	 a	
compact	binary-valued	vector.	The	LR	component	 consists	of	
the	features	which	generated	from	the	tree	component.	All	the	
continuous,	IDs,	and	categorical	feature	were	normalized	and	
embedding,	 then	put	 into	DL	part	 of	 the	model	with	 3	ReLU	
layers:	 256->128->64.	 Since	 we	 applied	 both	 ensemble	 and	
joint	 training,	 the	 output	 of	 LR	 and	 DL	 component	 are	
combined	at	inference	time	(ensemble	training)	or	at	training	
time	(joint	training)		
The	GLD	models	are	trained	on	over	200,000	battles.	The	batch	
size	and	epoch	was	set	to	5000	and	20,	respectively.	

4.3 Robot	Script	Validation	
Validation	module	includes	the	offline	AB	test	system	and	robot	
validation	system.	To	effectively	validate	 the	performances	of	
different	 models,	 run	 a	 preliminary	 offline	 evaluation	 on	
historical	 data	 to	 iterate	 faster	 on	 new	 ideas	 is	 well-known	
practice	 [10].	 The	 second	module	 is	 robot	 validation	 system,	
which	 generates	 the	 random	 robot	 roles	 with	 the	 high	
parameters	 than	 the	 AI’s.	 The	 strategy	 of	 robot	 validation	
system	applies	the	random	skill	on	the	random	target.	We	use	
the	win-rate	between	AI	strategy	and	robot	script	 to	validate	
the	performance	of	different	models.	

4.4 Model	Serving	
Once	the	model	is	trained	and	tested,	we	load	it	into	the	online	
model	servers.	For	each	battle	round,	the	servers	receive	a	list	
of	 skill-target	 candidate	 pairs	 from	 the	 candidate	 generation	
system	and	player	features	to	score	each	pair.	After	reducing	the	
candidate	pairs,	the	ranking	system	ranks	all	skill-target	pairs	
by	their	scores.	Then,	the	skill	and	target	with	the	highest	score	
was	set	to	the	command	system.	

	
5.	Experiment	Results	
To	 evaluate	 the	 effectiveness	 of	 Tree	 &	 Deep	 learning,	 we	
compared	our	system	with	some	other	AI	strategies	to	against	
a	robot	script.	The	robot	script	picks	the	random	skill	with	the	
random	target,	but	the	robot	roles	have	the	higher	parameters	
(more	HP,	more	 attack,	 etc.).	Meanwhile,	we	 also	 experiment	
our	 system	 with	 different	 configurations.	 Finally,	 our	 battle	
action	predict	system	was	productionized	on	SA	2.	The	serving	
performance	has	been	given	in	sub	section	3.	

5.1	Positive	up	sampling	
Class	imbalance	has	been	studied	by	many	researchers	and	has	
been	shown	to	have	significant	impact	on	the	performance	of	
the	 learned	model	 [6].	Because	most	 classification	models	 in	
fact	 don't	 yield	 a	 binary	 decision,	 but	 rather	 a	 continuous	
decision	 value.	 Using	 the	 decision	 values,	 we	 can	 rank	 test	
samples,	 from	 'almost	 certainly	 positive'	 to	 'almost	 certainly	
negative'.	 Based	 on	 the	 decision	 value,	we	 can	 always	 assign	
some	cutoff	that	configures	the	classifier	in	such	a	way	that	a	
certain	 fraction	of	data	 is	 labeled	as	positive.	Determining	an	
appropriate	threshold	can	be	done	via	the	model's	ROC	or	PR	
curves.	We	can	apply	the	decision	threshold	regardless	of	the	
balance	used	in	the	training	set.	Assuming	the	model	is	better	
than	 random,	 we	 can	 intuitively	 see	 that	 increasing	 the	
threshold	for	positive	classification	(which	leads	to	less	positive	
predictions)	 increases	 the	 model's	 precision	 and	 vice	 versa.	
Therefore,	 in	 this	 part,	we	 investigate	 the	 use	 of	 positive	 up	

	
	

sampling	 to	 test	 the	 influence	 of	 the	 class	 imbalance.	 We	
empirically	experiment	with	different	positive	up	sampling	rate	
to	test	the	prediction	accuracy	of	the	learned	model.	We	vary	
the	rate	in	{0.1,	0.2,	0.3,	…,	0.8,	0.9}.	The	experiment	result	is	
shown	in	Figure	9.	
From	the	result,	we	can	see	that	the	positive	up	sampling	rate	
has	significant	effect	on	the	performance	of	the	trained	model.	
The	 best	 performance	 is	 achieved	with	 positive	 up	 sampling	
rate	set	to	0.6.	

	
Figure	9,	Fraction	of	the	positive	samples	employed	for	

learning	

5.2	Experiments	with	GBDT	Component		
In	the	GBDT	component,	we	fixed	the	number	of	estimators	to	
100,	subsample	to	1,	learning	rate	to	0.1	and	changed	the	max	
depth	of	 the	 individual	 regression	 estimators.	The	maximum	
depth	limits	the	number	of	nodes	in	the	tree.	The	result	shown	
in	Table	1	 that	 increasing	 the	max	depths,	 the	model	has	 the	
better	performance	on	the	training	examples,	but	lower	at	6,	7	
max	 depths	 on	 the	 test	 examples.	 The	 reason	 for	 this	
phenomenon	is	overfitting:	the	higher	depth	will	allow	model	
to	learn	relations	very	specific	to	a	particular	sample.		

	
Table	1:	Experiments	of	GBDT	component	on	max	depth	

5.2	Experiments	with	DNN	Component	
Hidden	Layers	
Table	 2	 shows	 the	 results	 we	 used	 the	 same	 structure	 with	
different	 hidden	 layer	 configurations	 in	 DL	 module.	 	 These	
results	show	that	with	the	increasing	of	both	width	and	depth	
of	 hidden	 layers	 improves	 results.	 The	 trade-off,	 however,	 is	
server	CPU	time	needed	 for	 inference.	The	configuration	of	a	
512	hidden	ReLU	units	 followed	by	a	256	hidden	ReLU	units	
followed	by	a	128	hidden	ReLU	units	gave	us	the	best	results	
while	enabling	us	to	stay	within	our	serving	CPU	budget.		
For	 the	 512->256->128,	 we	 also	 tried	 the	 different	
normalization	 methods:	 min-max,	 standard,	 cumulative	
distribution,	 and	 none	 normalization.	 The	 cumulative	

distribution	 increased	 the	 win-rate	 by	 4%,	 with	 min-max	
increased	3.2%	and	standard	increased	2.7%.	

	
Table	2:	Experiments	of	DNN	component	on	different	

hidden	layers	

5.3	Experiments	with	different	battle	
strategies	
We	used	a	robot	validation	system	as	the	opponent	to	evaluate	
our	 GBDT,	 LR	 &	 Deep	 Learning	 model.	 The	 robot	 validation	
system	 generates	 10	 random	 robot	 roles	 with	 the	 higher	
parameters	 than	 the	AI	 player	 roles,	 but	 applies	 the	 random	
skill	 with	 the	 random	 target.	 The	 value	 shown	 for	 each	
configuration	 (“win-rate”)	was	 obtained	 by	 considering	 both	
positive	(win	by	AI)	and	negative	(win	by	robots).	As	shown	in	
Table	1,	GBDT,	LR	&	Deep	Learning	model	had	best	win-rate	
compared	with	the	random	skill	&	random	target	strategy,	LR-
only	 model,	 GBDT-only	 model,	 GBDT+LR	 model,	 Deep	
Learning-only	model	and	Reinforcement	Learning	(RL)	model.	
For	RL	model,	we	defined	the	percentage	of	the	sum(HPs)	of	the	
opponents	as	the	reward	function.		

	
Table	3,	different	models	against	to	the	robot	script	

Each	experiment	has	been	run	100,000	times.	The	main	reason	
is	that	some	AIs	such	as	GBDT,	LR	can	only	learning	the	frequent	
co-occurrence	of	skills	and	targets	in	the	historical	data.	On	the	
other	side,	the	RL	AI	tendency	use	attack	kind	skill	rather	than	
others.	The	shortage	is	that	the	assistant	role	or	the	healer	tried	
to	use	normal	attack	skill	instead	of	some	assistant	skills,	such	
as	speed	up	skill,	control	skill,	etc.	The	result	also	shown	that	
the	ensemble	training	has	the	better	performance	than	the	joint	
training.	

5.4	Serving	Performance	
Serving	with	 high	 throughput	 and	 low	 latency	 is	 challenging	
with	 the	 high	 level	 of	 traffic	 faced	 by	 our	 commercial	 turn-
based	mobile	game.	At	peak	traffic,	our	recommender	servers	
score	over	100,000	skill-pair	per	second.	With	single	threading,	
scoring	all	candidates	in	a	single	batch	takes	3	ms	on	a	CPU-only	
server.	
	

	
	

6. Conclusion	
We	have	described	our	battle	action	predict	system	on	a	turn-
based	 mobile	 game	 SA	 2.	 We	 treat	 our	 system	 as	 a	
recommendation	 ranking	 system	 in	 particular	 benefit	 from	
specialized	features	describing	past	player	behavior	with	used	
skills.		
We	 coalesced	 gradient	 boosted	 decision	 tree	 model,	 logistic	
regression	 and	deep	neural	 network-combine	 the	 benefits	 of	
generalization	(explores	the	skills	which	have	never	or	rarely	
used	 in	 the	 past)	 and	 memorization	 (based	 on	 learning	 the	
frequent	 co-occurrence	 of	 skills	 and	 targets	 in	 the	 historical	
data)	to	score	the	 list	of	possible	skill-action	pairs.	Moreover,	
the	tree	model	can	effectively	transform	the	input	features	to	
the	tuple	features.	Unlike	some	other	AI	strategies,	our	system	
does	not	need	any	prior	knowledge.	We	presented	the	Tree	&	
Wide	&	Deep	learning	framework	to	combine	the	strengths	of	
three	types	of	model.		
In	the	experiments	part,	we	test	the	resulting	 in	terms	of	the	
performances	 against	 the	 robot	 script	 showed	 that	 the	 GLD	
model	was	significantly	better	than	others.		
	

7. Acknowledgements	
We	 would	 like	 to	 thank	 many	 at	 Shanghai	 Luyou	 Network	
Technology,	especially	Dian	Wu,	Jun	Qi	for	the	robot	script,	and	
early	feedback	on	the	GLD	model.	We	would	also	like	to	thank	
the	 Tencent	 K5	 Cooperation	 Department,	 especially	 Qi	 Li,	
Zuoqiu	Shen,	Qi	wang	for	comments	on	the	manuscript.		
	

8. References	
[1]	The	StoneAge2.	http://sq.qq.com/	
[2]	Orivol	Vinyals,	Timo	Ewalds,	Sergey	barunov,	Petko	Georgiev,	
Alexander	Sasha	Vezhnevets,	Michelle	Yeo,	et	al.	StarCraft	II:	A	
New	 Challenge	 for	 Reinforcement	 Learning,	 DeepMind	 Lab.	
arXiv:1708.04782,	2017.	
[3]	Heng-Tze	Cheng,	Levent	Koc,	Jeremiah	Harmsen,	Tal	Shaked,	
Tushar	Chandra,	Hrishi	Aradhye,	Glen	Anderson,	Greg	Corrado,	
et	al.	Wide	&	Deep	Learning	for	Recommender	Systems,	DLRS	
2016	 Proceedings	 of	 the	 1st	 Workshop	 on	 Deep	 Learning	 for	
Recommender	Systems.	
[4]	 Tomas	 Mikolov,	 Ilya	 Sutskever,	 Kai	 Chen,	 Greg	 Corrado,	
Jeffrey	 Dean,	 Distributed	 Representations	 of	 Words	 and	
Phrases	and	their	Compositionality,	arXiv:1310.4546,	2013.	
[5]	 Paul	 Covington,	 Jay	 Adams,	 Emre	 Sargin,	 Deep	 Neural	
Networks	 for	 YouTube	 Recommendations,	Proceedings	 of	 the	
10th	ACM	Conference	on	Recommender	Systems,	ACM,	New	York,	
NY,	USA,	2016.	
[6]	Xinran	He,	Junfeng	Pan,	Ou	Jin,	Tianbing	Xu,	Bo	Liu∗,	Tao	Xu∗,	
Yanxin	 Shi∗,	 Antoine	 Atallah∗,	 Ralf	 Herbrich∗,	 et	 al,	Practical	
Lessons	from	Predicting	Clicks	on	Ads	at	Facebook.	
[7]	Makoto	 Ishihara,	Taichi	Miyazaki,	Pujana	Paliyawan,	Chun	
Yin	 Chu,	 Tomohiro	 Harada,	 Ruck	 Thawonmas,	 Investigating	
Kinect-based	Fighting	Game	AIs	That	Encourage	Their	players	
to	Use	Various	Skills,	Consumer	Electronics	(GCCE),	2015	IEEE	
4th	Global	Conference	on.	
[8]	 Si	 Si,	 Huan	 Zhang,	 S.	 Sathiya	 Keerthi,	 Dhruv	 Mahajan,	
Inderjit	 S.	 Dhillon,	 Cho-Jui	 Hsieh,	 Gradient	 Boosted	 Decision	

Trees	for	High	Dimensional	Sparse	Output,	Proceedings	of	the	
34th	 International	 Conference	 on	 Machine	 Learning,	 PMLR	
70:3182-3190,	2017.	
[9]	 S.	 Ioffe	 and	C.	 Szegedy.	Batch	normalization:	Accelerating	
deep	 network	 training	 by	 reducing	 internal	 covariate	 shift.	
CoRR,	abs/1502.03167,	2015.	
[10]	Alexandre	Gilotte,	Clément	Calauzènes,	Thomas	Nedelec,	
Alexandre	Abraham,	Simon	Dollé	Criteo	Research,	Offline	A/B	
testing	for	Recommender	Systems,	arXiv:1801.07030v1,	2018.	
[11]	 J.	 Duchi,	 E.	 Hazan,	 and	 Y.	 Singer.	 Adaptive	 subgradient	
methods	 for	 online	 learning	 and	 stochastic	 optimization.	
Journal	 of	 Machine	 Learning	 Research,	 12:2121–2159,	 July	
2011.	
[12]	M.	Abadi,	A.	Agarwal,	P.	Barham,	E.	Brevdo,	Z.	Chen,	C.	Citro,	
G.	 S.	 Corrado,	 A.	 Davis,	 J.	 Dean,	 M.	 Devin,	 S.	 Ghemawat,	 I.	
Goodfellow,	A.	Harp,	G.	Irving,	M.	Isard,	Y.	Jia,	R.	Jozefowicz,	L.	
Kaiser,	M.	Kudlur,	J.	Levenberg,	D.	Man	́e,	R.	Monga,	S.	Moore,	D.	
Murray,	C.	Olah,	M.	Schuster,	J.	Shlens,	B.	Steiner,	I.	Sutskever,	K.	
Talwar,	 P.	 Tucker,	 V.	 Vanhoucke,	 V.	 Vasudevan,	 F.	 Vi	́egas,	 O.	
Vinyals,	P.	Warden,	M.	Wattenberg,	M.	Wicke,	Y.	Yu,	and	X.	Zheng.	
TensorFlow:	 Large-scale	machine	 learning	 on	 heterogeneous	
systems,	2015.	Software	available	from	tensorflow.org.	
[13]	 X.	 Amatriain.	 Building	 industrial-scale	 real-world	
recommender	 systems.	 In	 Proceedings	 of	 the	 Sixth	 ACM	
Conference	on	Recommender	Systems,	RecSys.	
[14]	George	Cybenko,	“Approximation	by	superpositions	of	a	
sigmoidal	function,”	2,	303–314.	
[15]	Michael	Nielsen,	“Neural	networks	and	deep	learning,”	
(Determination	Press,	2015)	Chap.	4.	
[16]	 Bernardo	 Llanas,	 Sagrario	 Lantar´on,	 and	 Francisco	 J	
S´ainz,	“Constructive	approximation	of	discontinuous	functions	
by	neural	 networks,”	Neural	 Processing	Letters	 27,	 209–226,	
2008.	
[17]	 Cheng	 Guo,	 Felix	 Berkhahn,	 Entity	 Embeddings	 of	
Categorical	Variables,	arXiv:1604.06737,	2016	
[18]	Yan	Duan,	 Xi	 Chen,	Rein	Houthooft,	 John	 Schulman,	 and	
Pieter	Abbeel.	Benchmarking	deep	reinforcement	learning	for	
continuous	 control.	 In	 International	 Conference	 on	 Machine	
Learn-	ing,	pages	1329–1338,	2016.	
[19]	 Volodymyr	 Mnih	 Koray	 Kavukcuoglu	 David	 Silver	 Alex	
Graves	 Ioannis	 Antonoglou	 Daan	 Wierstra	 Martin	
Riedmiller,Playing	 Atari	 with	 Deep	 Reinforcement	 Learning,	
DeepMind	Lab.	arXiv:1312.5602,	2013	
[20]	 M.	 Ishihara,	 T.	 Miyazaki,	 C.Y.	 Chu,	 T.	 Harada	 and	 R.	
Thawonmas,	“Applying	and	improving	Monte-Carlo	Tree	Search	
in	 a	 fighting	 game	AI,”	ACM	 Int.	 Conf.	 Advances	 in	 Computer	
Entertainment	Technology,	2016.	
[21]	S.	Yoshida,	M.	Ishihara,	T.	Miyazaki,	Y.	Nakagawa,	T.	Harada	
and	R.	Thawonmas,	“Application	of	Monte-Carlo	Tree	Search	in	
a	 fighting	 game	AI,”	 IEEE	Global	 Conf.	 Consumer	Electronics,	
2016.	
[22]	J.	E.	Laird,	“Using	a	computer	game	to	develop	advanced	ai,”	
Com-	 puter,	 vol.	 34,	 no.	 7,	 pp.	 70–75,	 Jul.	 2001.	 [Online].	
Available:	http://dx.	doi.org/10.1109/2.933506	

	
	

[23]	 M.	 Buro	 and	 T.	 M.	 Furtak,	 “Rts	 games	 and	 real-time	 ai	
research,”	in	Proc.	Behavior	Representation	Model.	Simul.	Conf.,	
2004,	pp.	51–58.	
[24]	 Leemon	 Baird.	 Residual	 algorithms:	 Reinforcement	
learning	 with	 function	 approximation.	 In	 Proceedings	 of	 the	
12th	 International	 Conference	 on	 Machine	 Learning	 (ICML	
1995),	pages	30–37.	Morgan	Kaufmann,	1995.	
[25]	Marc	G	Bellemare,	Yavar	Naddaf,	Joel	Veness,	and	Michael	
Bowling.	 The	 Arcade	 Learning	 Environment:	 An	 evaluation	
platform	for	general	agents.	J.	Artif.	Intell.	Res.(JAIR),	47:253–	
279,	2013.	
	

