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Abstract

In recent, non-pharmaceutical intervention (lockdown, quarantine,
expended testing) and the pharmaceutical intervention (use of com-
monly used drugs) are the only available policy to control the COVID-
19 epidemic. But the question is that whether the disease is to be par-
tially or totally eradicated from the human population still remains
unsolved. Usually, social distancing, using the mask, etc. are the
only available policy to control the pandemic. Uses of common drugs
(azithromycin, HCQ, antiprotozoal with Doxycycline) are the most ef-
fective treatment for the disease which can only activate the immune
system to fight against the disease progression. We have formulated
a seven compartmental SEIQR type model describing the spread of
the COVID-19 among the human population. We have also apply the
optimal control theory to the seven compartmental SEIQR model of
ordinary differential equations to reduce the number of the infected
population while minimizing the cost associated with the awareness
and drug use in a particular time period. Analytical findings along
with numerical simulations strongly suggest that the system behavior
depends on basic reproduction number and awareness related to social
distancing, using the mask and common drug usage are suggested to
be maintained at the least possible level.
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1 Introduction

On 31st December 2019, the first case of unknown pneumonia was detected
in the WHO country office in Wuhan, China. WHO declared the outbreak
a Public Health Emergency on 30th January 2020 [1]. Within a short time,
a team of virologists identified and recognized the virus [2]. On 11th Febru-
ary 2020, WHO announced a name for the disease as COVID-19. The
infection of COVID -19 associated with the virus SARS-CoV-2 which is a
single standard RNA virus genome that is closely related to the severe acute
respiratory syndrome SARS-CoV. The infection of COVID-19 is associated
with a SARS-CoV.

On March 11, 2020, WHO declared COVID-19 as a global pandemic [1].
As of 31st May 2020, globally more than 6.5 million people are infected and
COVID-19 related death have crossed the 0.3 million mark. In India 73 con-
firmed COVID-19 cases have been observed on March 12, 2020. As per the
data from the Ministry of Health and Family Welfare (MHFW), most of the
cases were reported from Kerala. After that Union Ministry of Road and
Transport and Highways advised states and Union territories to take nec-
essary measures for sanitization of public transport vehicles and terminals
were taken by the. All educational institutions, stadiums, and sports clubs
were closed from till further orders. On March 24, 2020, the Government of
India (GOI) ordered a national wide lockdown for 21 days. After that GOI
declared lockdown in three consecutive phases till 30th May 2020. The Gov-
ernment of India divided all the districts into three zones based green, red,
and orange [3]. On 17th May, the National Disaster Management Authority
extended the lockdown till 31st May 2020 [4].

On 30th May, the lockdown was extended till 30th June 2020 only for
containment zones. During the 4th lockdown, it has been observed that the
basic reproduction number (R0) was reduced from 1.83 to 1.23 for all over
India [13]. From this measure of besic reproduction number R0, we can
say that India is controlling COVID -19. The decrease of R0 is the effect
of lockdown. During the lockdown period, social distancing, using masks,
wearing long sleeves, frequent hand washing, sanitization played a pivotal
role to reduce the basic reproduction number. Also using commonly used
drug-like azithromycin, HCQ, antiprotozoal with Doxycycline for the treat-
ment of COVID-19 patients played an effective role to control the disease in

2



Figure 1: Transmission flowchart of COVID-19

India.
In this article, our main aim is to explore the cost-effective strategies

of awareness like social distancing, using mask along with common drug
use and its effect on disease transmission and progression. In Section 2,
we present the seven compartmental SEIQR model. In section 3, we study
the existence and boundedness of the system. In section 4, we study the
stability of the system and in section 5 we analyze the sensitivity of R0. In
section 6, we introduce the objective function and two control variables to
minimize the number of infected and exposed populations. In this section,
we also develop the adjoint equations and formulate the characterization of
optimal control strategies by applying the optimal control theory [10]. In
section 7 and 8 we discuss our analytical as well as numerical findings.

2 Mathematical Model Formulation

We propose a seven compartmental SEIQR model (see Figure 1) to describe
the transmission of COVID-19 infection in a human population of size N(t).

Here we consider the following seven classes:

� S(t) − the number of susceptible individuals at time t;

� E(t) − the number of exposed individuals at time t;
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� I(t) − the number of infected individuals at time t;

� Ir(t) − the number of reported infected individuals and who are in
isolation or hospitalised at time t;

� Iu(t) − the number of asymptomatic infected individuals at time t;

� Q(t) − the number quarantine individuals at time t;

� R(t) − the number of recovered individuals at time t.

The total population size N(t) = S(t) + E(t) + I(t) + Ir(t) + Iu(t) +
Q(t) +R(t).

In view the above biological consideration, we establish a dynamical
mathematical model of novel coronavirus following system of non-linear dif-
ferential equations:

dS

dt
= Πs −

βS

N
(meE +miI +mirIr +miuIu)− k1S − µS,

dE

dt
=

βS

N
(meE +miI +mirIr +miuIu)− γE − k2E − µE,

dI

dt
= γE − k3I − αI − µI,

dIr
dt

= α(1− θ)I − k4Ir − η1Ir − µIr, (1)

dIu
dt

= αθI − k5Iu − η2Iu − µIu,

dQ

dt
= k1S + k2E + k3I + k4Ir + k5Iu − δQ− η3Q− µQ,

dR

dt
= η1Ir + η2Iu + η3Q− µR,

with this initial conditions

S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, Ir(0) ≥ 0, Iu(0) ≥ 0, Q(0) ≥ 0 and R(0) ≥ 0. (2)

Here, quarantine population refers to the separation of susceptible in-
dividuals with travel history, exposed, and infected individuals from the
general population. Let Πs be the net inflow of susceptible individuals into
the region per unit time. We assume that µ is the death rate of seven
subpopulations of the model irrespective of demographic effect. For four
groups of infected population the disease transmission coefficient are βme,
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Table 1: Parameters and descriptions used in Model 1
Parameter Description value

Πs Recruitment rate -
β Transmission rate -
γ Migration rate of exposed to infected sub class 0.2 (day−1)
θ′ Screening/testing rate 0.8 (day−1)
δ Escape rate from quarantine 0.04 (day−1)
µ natural death rate 0.005 (day−1)

me Contact factor for exposed individuals 0.3
mi Contact factor for infected individuals 0.3
mir Contact factor for reported individuals 0.3
miu Contact factor for unreported individuals 0.3
α Modification factor of Screening/testing 0.1

k1 Quarantine rate of susceptible individual 0.006 (day−1)
k2 Quarantine rate of exposed individual 0.006 (day−1)
k3 Quarantine rate of infected individual 0.006(day−1)
k4 Quarantine rate of reported infected individual 0.006 (day−1)
k5 Quarantine rate of unreported infected individual 0.006 (day−1)

η1 Recovery rate from infected individuals 0.037 (day−1)
η2 Recovery rate from reported infected individuals 0.037 (day−1)
η3 Recovery rate from unreported individuals 0.037 (day−1)

βmi, βmir, and βmiu respectively where β is the disease transmission rate
and me, mi, mir, miu are the relative intensity of contact factors. γ is the
rate at which the exposed population moves to the infected population. The
infected population is reported at a rate of α(1− θ) and the infected popu-
lation moves to the unreported population at a rate of αθ. Here we assume
θ′ = 1− θ, where θ′ is the screening/testing rate. Let k1, k2, k3, k4, k5 are
quarantine rate of the respective populations and η1, η2, and η3 are the rate
of recovery of Ir, Iu, and Q respectively. Also, we assume δ is the escape
rate of individuals from quarantine.

3 Model Properties

3.1 Positivity and boundedness of solution

In this section, we prove the positivity and boundedness of the system (1)
with positive initial condition (S(0), E(0), I(0), Ir(0), Iu(0), Q(0), R(0))T ∈ R7

+.
First we state the following lemma.
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Lemma 1. Suppose Ψ ⊂ R × C is open, hl ∈ C(Ψ,R), l = 1, 2, 3, ...,
p. If hi |rl(t)=0,Gt∈Cp

+0
≥ 0, Gt = (r1t, r2t, ..., rpt)

T , then Cn+0 {$ =

($1, $2, ..., $p) : $ ∈ C([−τ, 0],Rp+0)} is the invariant domain of the
following equations.

drl(t)

dt
= hl(t, Gt), t ≥ θ, l = 1, 2, 3, ..., p,

where Rp+0 = {(r1, r2, r3, ..., rp : rl ≥ 0, l = 1, ..., p} [11].

Theorem 1. The system (1) with initial condition (2) is invariant with in
R7

+ .

Proof. We re-write the the system (1), as

dY (t)

dt
= P (Y (t)), Y (0) = Y0 ≥ 0, (3)

P (Y (t)) = (P1(X(t)), ...., P7(X(t))T .

Now, we see that

dS

dt
|S=0 = Πs > 0,

dE

dt
|E=0=

βS

N
(meE +miI +mirIr +miuIu) ≥ 0,

dI

dt
|I=0 = γE ≥ 0,

dIr
dt
|Ir=0= α(1− θ)I ≥ 0,

dIu
dt
|Iu=0= αθI ≥ 0,

dQ

dt
|Q=0 = k1S + k2E + k3I + k4Ir + k5Iu ≥ 0.

dR

dt
|R=0 = η1Ir + η2Iu + η3Q ≥ 0,

So, following this theorem the system (1) is an invariant set R7
+.

Theorem 2. All the solution of the system (1) with this initial conditions
(2) is uniformly bounded in the region Φ, where feasible regions Φ is defined
by

Φ =
{

(S,E, I, Ir, Iu, Q,R) ∈ R7
+ : S ≤ Πs

µ
,

S + E + I + Ir + Iu +Q+R ≤ Πs

µ

}
(4)

with this initial conditions (2).
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Proof. Let, time dependent function:

N = S + E + I + Ir + Iu +Q+R,

Using system (1) in the above expression, we get

dN(t)

dt
= Πs − [S + E + I + Ir + Iu +Q+R]µ,

≤ Πs −Nµ,

where, µ = min{µ, k1 + µ}.
Thus,

dN

dt
+Nµ ≤ Πs,

using the theorem of Deferential inequality [8], we obtain

0 < N ≤ N(0)e−µt +
Πs

µ
,

where N(0) denotes the initial value of the separate variables, as t→ ∞,
we have,

0 < S + E + I + Ir + Iu +Q+R ≤ Πs

µ
.

So, Πs/µ be an upper bound of N provided that N(0) ≤ Πs/µ, if N(0) ≥
Πs/µ then N will decrease to this level. Thus all the solutions of the system
(1) are bounded in Φ.

4 Model analysis

4.1 Disease-free equilibrium (DFE) and the reproduction
number

The system (1) with the initial condition (2) has a DFE point Ψ0(S0, E0, I0, I0
r , I

0
u, Q

0, R0)
that is Ψ0(Πs/(k1+µ), 0, 0, 0, 0, 0, 0) which is always exists, without any con-
dition.

The model reproduction number can be predictable with the next gener-
ation operator approach using van den Driessche and Watmough (2002) [9].
The matrices for new infection and transition terms given by F and V re-
spectively, we have
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F =



βme βmi βmir βmiu 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and

V =



b2 0 0 0 0 0
−γ b3 0 0 0 0

0 −α(1− θ) b4 0 0 0
0 − αθ 0 b5 0 0

−k2 − k3 −k4 −k5 b6 0
0 0 −η1 −η2 −η3 µ

 ,

where,

b1 = k1 + µ, b2 = k2 + γ + µ, b3 = k3 + α+ µ,

b4 = k4 + η1 + µ, b5 = k5 + η2 + µ, b6 = δ + η3 + µ.

The model reproduction number, denoted by R0 is the spectral radius
of next generation matrix given by

R0 = ρ(FV −1) = R01 +R02 +R03 +R04

=
βme

(k2 + γ + µ)
+

γβmi

(k2 + γ + µ)(k3 + α+ µ)
+

γβα(1− θ)mir

(k2 + γ + µ)(k3 + α+ µ)(k4 + η1 + µ)

+
γβαθmiu

(k2 + γ + µ)(k3 + α+ µ)(k5 + η2 + µ)

=
β

(k2 + γ + µ)

[
me +

γmi

(k3 + α+ µ)
+

γα(1− θ)mir

(k3 + α+ µ)(k4 + η1 + µ)

+
γαθmiu

(k3 + α+ µ)(k5 + η2 + µ)

]
. (5)

4.2 Stability analysis of disease-free equilibrium (DFE)

Theorem 3. The disease-free equilibrium of the system (1) Ψ0, that is exists
for all initial condition (2) and is locally asymptotically stable for R0 < 1
and unstable for R0 > 1.
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Figure 2: Transcritical bifurcation: steady state value of exposed, infected,
reported infected and unreported infected population are plotted versus ba-
sic reproduction number R0 using the set of parameters as given in Table
1 except disease transmission rate β. Endemic stead state feasible when
R0 > 1. β is varied in plotting the figure.

Proof. For determine the local stability of Ψ0, the Jacobian matrix of the
system (1) is calculated at DFE as:

JΨ0 =



−b1 −βme −βmi −βmir −βmiu 0 0
0 −b16 βmi βmir βmiu 0 0
0 γ − b3 0 0 0 0
0 0 α(1− θ) −b4 0 0 0
0 0 αθ 0 −b5 0 0
k1 k2 k3 k4 k5 −b6 0
0 0 0 η1 η2 η3 −µ


,

where, b16 = b2 − βme.
Let us consider ϑ is a eigenvalue of the matrix JΨ0 . The characteristic

equation is det(JΨ0 − ϑI7) = 0. From this characteristics equation, three
eigenvalues of JΨ0 are −µ, −(k1 + µ) and −(δ + η3 + µ), these are real,
negative and the other four eigenvalues is expressed in the form

γβmi(ϑ+ b4)(ϑ+ b5) + γα(1− θ)βmir(ϑ+ b5)

+γαθβmiu(ϑ+ b4) + βme(ϑ+ b3)(ϑ+ b4)(ϑ+ b5)

−(ϑ+ b2)(ϑ+ b3)(ϑ+ b4)(ϑ+ b5) = 0.
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We can rewrite the above equation:

βme

(ϑ+ b2)
+

γβmi

(ϑ+ b2)(ϑ+ b3)
+

γα(1− θ)βmir

(ϑ+ b2)(ϑ+ b3)(ϑ+ b4)
(6)

+
γαθβmiu

(ϑ+ b2)(ϑ+ b3)(ϑ+ b5)
= 1.

Let

R1(ϑ) =
βme

(ϑ+ b2)
+

γβmi

(ϑ+ b2)(ϑ+ b3)
+

γα(1− θ)βmir

(ϑ+ b2)(ϑ+ b3)(ϑ+ b4)
(7)

+
γαθβmiu

(ϑ+ b2)(ϑ+ b3)(ϑ+ b5)
. (8)

Rewrite the equation (7) R1(ϑ) as

R1(ϑ) = R01(ϑ) +R02(ϑ) +R03(ϑ) +R04(ϑ).

Now if Re(ϑ) ≥ 0, ϑ = v + iw, we get

|R01(ϑ)| ≤ βme

|ϑ+ b2|
≤ R01(v) ≤ R01(0),

|R02(ϑ)| ≤ γβmi

|ϑ+ b2||ϑ+ b3|
≤ R02(v) ≤ R02(0),

|R03(ϑ)| ≤ γα(1− θ)βmir

|ϑ+ b2||ϑ+ b3||ϑ+ b4|
≤ R03(v) ≤ R03(0),

|R04(ϑ)| ≤ γαθβmiu

|ϑ+ b2||ϑ+ b3||ϑ+ b5|
≤ R04(v) ≤ R04(0).

Then

R01(0) +R02(0) +R03(0) +R04(0) = R1(0) = R0 < 1,

which means; |R1(ϑ)| ≤ 1. If R0 < 1, then all the eigenvalues of the
above characteristic equation R1(ϑ) = 1 has negative real part.

Therefore, for R0 < 1, all eigenvalue are negative. Hence, DFE Ψ0 is
locally asymptotically stable.

Again, if we consider R0 > 1, that is R1(0) > 1, then

lim
ϑ→∞

R1(ϑ) = 0.

If there exist ϑ1 > 0, such that R1(ϑ1) = 1. This means that there exist
positive eigenvalue ϑ1 > 0 of the matrix JΨ0 .

Hence, the disease-free equilibrium Ψ0(Πs/(k1 + µ), 0, 0, 0, 0, 0, 0) is un-
stable when R0 > 1.

10



4.3 Existence of the endemic equilibrium

The model system (1) with initial condition (2) also exhibits an endemic
equilibrium Ψ∗(S∗, E∗, I∗, I∗r , I

∗
u, Q

∗, R∗) with positive components provided,
R0 > 1. Equating the derivatives in the system (1) to zero and solving the
resulting equations, we get;

S∗ =
N∗

R0
, E∗ =

k3 + α+ µ

γ
I∗, I∗r =

α(1− θ)
k4 + η1 + µ

I∗,

I∗ =
γ[(R0 − 1)Πs + (Πs −N∗(k1 + µ))]

N∗(k2 + γ + µ)(k3 + α+ µ)
, I∗u =

αθ

k5 + η2 + µ
I∗,

Q∗ =
k1N

∗

(δ + η3 + µ)R0
+
(
k3 +

k2(k3 + α+ µ)

γ
+
k4α(1− θ)
k4 + η1 + µ

+
k5αθ

k5 + η2 + µ

)
I∗,

R∗ =
( η1α(1− θ)
k4 + η1 + µ

+
η2αθ

k5 + η2 + µ

)
I∗ + η3Q

∗,

if, (i) R0 > 1, (ii) Πs/(k1 + µ) > N∗.

5 Sensitivity analysis

To determine the best way to reduce infection and mortality due to COVID-
19, it is necessary to know which parameters play a pivotal role in its trans-
mission and disease progression. Initial disease transmission is directly re-
lated to the basic reproduction number of the system which is a function of
model parameters.

Here we calculate the sensitivity indices of the reproductive number, R0,
to the parameters in the model. From these outcomes, we can determine
which parameters are most crucial for controlling the disease transmission.
We know that sensitivity analysis is mainly used to determine the parameter
that has a high impact on the model dynamics.

The normalized forward sensitivity index of a variable to a parameter is
defined below:

Definition: The normalized forward sensitivity index of a variable B,
that depends differentiable on a parameter x, is defined as:

ΥB
x :=

∂B

∂x
× x

B
(9)
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Table 2: Sensitivity indices of R0 to parameters for the seven compartmental
SEIQR model, evaluated at the parameter values given in Table 1. The
parameters are ordered from most sensitive to least. Here the most sensitive
parameter is disease transmission rate β and least sensitive parameter is k3

Parameter β miu θ mir α mi me k2

Sensitivity 1 0.571 0.191 0.163 0.157 0.144 0.121 0.025
index

Parameter k4 µ γ η1 k5 η2 k3

Sensitivity -0.043 -0.071 -0.0843 -0.1106 -0.1506 -0.3872 -0.7896
index

5.1 Sensitivity indices of R0

We have already found out the explicit formula of R0 in (5), we can derive
the analytical expression for sensitivity of R0 defined as ΥR0

x = ∂R0
∂x ×

x
R0

for
each of fifteen parameters. The sensitivity index of R0 with respect to the
system parameters are as follows:

ΥR0
β =

∂R0

∂β
× β

R0
= 1,

ΥR0
me

=
∂R0

∂me
× me

R0
=

β

(k2 + γ + µ)
× me

R0

ΥR0
mi

=
∂R0

∂mi
× mi

R0
=

γβ

(k2 + γ + µ)(k3 + α+ µ)
× mi

R0
,

ΥR0
mir

=
∂R0

∂mir
× mir

R0
=

(1− θ)γβα
(k2 + γ + µ)(k3 + α+ µ)(k4 + η1 + µ)

× mir

R0
,

ΥR0
miu

=
∂R0

∂miu
× miu

R0
=

θγβα

(k2 + γ + µ)(k3 + α+ µ)(k5 + η2 + µ)
× miu

R0
,

ΥR0
k2

=
∂R0

∂k2
× k2

R0
= − R0

(k2 + γ + µ)
× k2

R0
,

ΥR0
k3

=
∂R0

∂k3
× k3

R0
= − γβ

(k2 + γ + µ)(k3 + α+ µ)2

[
mi +

(1− θ)αmir

(k4 + η1 + µ)

+
θαmiu

(k5 + η2 + µ)

]
× k3

R0

ΥR0
k4

=
∂R0

∂k4
× k4

R0
= − γβ(1− θ)αmir

(k2 + γ + µ)(k3 + α+ µ)(k4 + η1 + µ)2
× k4

R0
,
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ΥR0
η1 =

∂R0

∂η1
× η1

R0
= − γβ(1− θ)αmir

(k2 + γ + µ)(k3 + α+ µ)(k4 + η1 + µ)2
× η1

R0
,

ΥR0
k5

=
∂R0

∂k5
× k5

R0
= − γβαθmiu

(k2 + γ + µ)(k3 + α+ µ)(k5 + η2 + µ)2
× k5

R0
,

ΥR0
η2 =

∂R0

∂η2
× η2

R0
= − γβαθmiu

(k2 + γ + µ)(k3 + α+ µ)(k5 + η2 + µ)2
× η2

R0
,

ΥR0
θ =

∂R0

∂θ
× θ

R0
=

γβα

(k2 + γ + µ)(k3 + α+ µ)

[ miu

(k5 + η2 + µ)

− mir

(k4 + η1 + µ)

]
× θ

R0
,

ΥR0
α =

∂R0

∂α
× α

R0
=

γβ

(k2 + γ + µ)(k3 + α+ µ)2

[
mi +

(k3 + µ)(1− θ)αmir

(k4 + η1 + µ)

+
(k3 + µ)θαmiu

(k5 + η2 + µ)

]
× α

R0
,

ΥR0
γ =

∂R0

∂γ
× γ

R0
=

1

(k2 + γ + µ)

[ β

(k3 + α+ µ)

(
mi +

(1− θ)αmir

(k4 + η1 + µ)

+
θαmiu

(k5 + η2 + µ)

)
−R0

]
× γ

R0
,

ΥR0
µ =

∂R0

∂µ
× µ

R0
= − 1

(k2 + γ + µ)

[ β

(k3 + α+ µ)2

(
mi

+
(k3 + k4 + η1 + α+ 2µ)(1− θ)αmir

(k4 + η1 + µ)2

+
(k3 + k5 + η2 + α+ 2µ)θαmiu

(k5 + η2 + µ)2

)
+R0

]
× µ

R0
.

Here ΥR0
β = 1 is the largest sensitivity index and ΥR0

k3
= −0.7896 is the

least sensitivity index. If disease transmission rate β reduces 1% then R0

also reduces 1%. Similarly R0 is increasing function of the parameters miu,
mir, me, mi, k2, θ, α. From this finding we have also observed that R0

increases as the unreported rate θ increases. Hence if we increase the rate
of testing R0 decreases and thus disease can be controlled.

The reproduction number R0 is a decreasing function of the quarantine
parameters k3, k4, k5, η1, η2, γ and µ respectively. As the quarantine
rate of infected, unreported, and reported infected individuals increases, the
basic reproduction number decreases. Hence high quarantine rate plays a
pivotal role to control the disease spread. We obtained the results from our
theoretical (see Figure 3) as well as numerical findings ( see Figure 2).
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Figure 3: Tornado plot of sensitivity analysis of all fifteen parameters that
influence R0.

6 Optimal control

In this section, we apply an optimal control technique; this is one of the
most powerful mathematical tools which make the result involving infectious
disease dynamical systems ( [5]- [7]). By using this mathematical tool we
trying to reduce the spread of coronavirus infection in our community. Our
main objective is to minimize the infected population and to maximize the
recovered population [10]. In the model (1) we have seven state variables
i.e. S, E, I, Ir, Iu, Q, and R. In this optimal control problem, we introduce
two control variables.

(i). The first control u1(t) represents that when susceptible persons
handling the coronavirus infected persons then they should cover all cuts,
wear full cover shoes, gloves, use the shirts with long sleeves, mask, hygiene,
and maintain distancing.

(ii). The second control u2(t) is to use common effective antibiotic use.
The above control variables in the model (1) are adjusted in the following

form
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dS

dt
= Πs −

βS

N
(1− u1(t))(meE +miI +mirIr +miuIu)− k1S − µS,

dE

dt
=

βS

N
(1− u1(t))(meE +miI +mirIr +miuIu)− γE − k2E − µE,

dI

dt
= γE − k3I − αI − µI − u2(t)I,

dIr
dt

= α(1− θ)I − k4Ir − η1Ir − µIr, (10)

dIu
dt

= αθI − k5Iu − η2Iu − µIu,

dQ

dt
= k1S + k2E + k3I + k4Ir + k5Iu − δQ− η3Q− µQ,

dR

dt
= η1Ir + η2Iu + η3Q+ u2(t)I − µR.

The control set for the control variables is defined as,

U = {u = (u1(t), u2(t)) | 0 ≤ u1, u2 ≤ 1, is Lebesgue measureable.} (11)

Our aim is to minimize the objective functional:

K(u) =

∫ T

0

[
σ1E + σ2I + σ3Ir + σ4Iu +

1

2

(
ν1u

2
1 + ν2u

2
2

)]
dt. (12)

All the coefficients σ1, σ2, σ3, σ4, ν1, and ν2 are nonnegative, its repre-
sents weights on the different terms of objective functional.

Theorem 4. Define an optimal control vector u∗ = (u∗1, u
∗
2) ∈ U and the

corresponding state solutions p∗ = (S∗, E∗, I∗, I∗r , I
∗
u, Q

∗, R∗) in the model
(10), there exist adjoint variables ϕj(t), j=1, ..., 7, satisfying

ϕ′1 = −
[
(ϕ2 − ϕ1)

β(1− u1)

N
(meE +miI +mirIr +miuIu)− (k1 − µ)ϕ1

+k1ϕ6

]
,

ϕ′2 = −
[
σ1 + (ϕ2 − ϕ1)

β(1− u1)S

N
me − (µ+ k2 + γ)ϕ2 + γϕ3 + k2ϕ6

]
,

ϕ′3 = −
[
σ2 + (ϕ2 − ϕ1)

β(1− u1)S

N
mi + (µ+ k3 + α+ u2)ϕ3 + (1− θ)αϕ4

+θαϕ5 + k3ϕ6 + u2ϕ7

]
,

15



ϕ′4 = −
[
σ3 + (ϕ2 − ϕ1)

β(1− u1)S

N
mir − (µ+ k4 + η1)ϕ4 + k4ϕ6 + η1ϕ7

]
,

ϕ′5 = −
[
σ3 + (ϕ2 − ϕ1)

β(1− u1)S

N
mir − (µ+ k5 + η2)ϕ5 + k5ϕ6 + η2ϕ7

]
,

ϕ′6 = (µ+ δ + η3)ϕ6 − η3ϕ7, ϕ′7 = µϕ7,

with the transversality conditions: ϕj(T ) = 0, j = 1, ..., 7.
Additionally, the optimal control vector is given by u∗ = (u∗1, u

∗
2), where

u∗1 = min
{

max
{

0,
(ϕ2 − ϕ1)βS(meE +miI +mirIr +miuIu)

ν1N

}
, 1
}
,

u∗2 = min
{

max
{

0,
(ϕ3 − ϕ7)I

ν2

}
, 1
}
.

Proof. Following the Pontryagin’s Minimum Principle [10], we can obtain
the Hamiltonian as we get:

H = σ1E + σ2I + σ3Ir + σ4Iu +
1

2

(
ν1u

2
1 + ν2u

2
2

)
+ϕ1

[
Πs −

βS

N
(1− u1(t))(meE +miI +mirIr +miuIu)− (k1 + µ)S

]
+ϕ2

[βS
N

(1− u1(t))(meE +miI +mirIr +miuIu)− (γ + k2 + µ)E
]

+ϕ3

[
γE − (k3 + α+ µ+ u2(t))I

]
+ ϕ4

[
α(1− θ)I − (k4 + η1 + µ)Ir

]
+ϕ5

[
αθI − (k5 + η2 + µ)Iu

]
+ϕ6

[
k1S + k2E + k3I + k4Ir + k5Iu − (δ + η3 + µ)Q

]
+ϕ7

[
η1Ir + η2Iu + η3Q+ u2(t)I − µR

]
.

Now, adjoint variables ϕj(t) = 0, j = 1, ..., 7, by:

ϕ′1 = −∂H
∂S

, ϕ′2 = −∂H
∂E

, ϕ′3 = −∂H
∂I

, ϕ′4 = −∂H
∂Ir

,

ϕ′5 = −∂H
∂Iu

, ϕ′6 = −∂H
∂Q

, ϕ′7 = −∂H
∂R

,

with the transversality conditions ϕj(T ) = 0, j = 1, ..., 7. We get the
characterization of optimal controls by saying

∂H
∂u1

= 0,
∂H
∂u2

= 0.
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From ∂H
∂u1

= 0 and ∂H
∂u2

= 0, we get

u1 =
(ϕ2 − ϕ1)βS(meE +miI +mirIr +miuIu)

ν1N
,

u2 =
(ϕ3 − ϕ7)I

ν2
.

By holding the upper and lower bounds for u1 and u2 into account, we
are following the characterization of optimal controls:

u∗1 = min
{

max
{

0,
(ϕ2 − ϕ1)βS(meE +miI +mirIr +miuIu)

ν1N

}
, 1
}

u∗2 = min
{

max
{

0,
(ϕ3 − ϕ7)I

ν2

}
, 1
}

This proof is completes.

7 Numerical Study

From the estimated value of R0 of different states ( [13]) during 4th lockdown
and recovery rate of different state ( [14]), we focused our seven compartmen-
tal SEIQR model (1) to the daily new COVID-19 cases for the six states
of India namely Tamil Nadu, Punjab, Uttar Pradesh, Karnataka, Bihar,
and West Bengal. Daily COVID-19 cases are collected for the period of 4th
lockdown ( 18th May 2020 to 31st May 2020) from the National Information
Centre, Ministry of Electronics and Information Technology, Government of
India. Figure 4 shows the graphical representation of the state-wise COVID-
19 effective reproduction rate R0 and the recovery rate of six major states in
India during 4th lockdown in India. From these figures, it is clearly observed
that during 4th lock down the basic reproduction number is maximum for
Bihar. But there is a hope that the recovery rate of Bihar is maximum
compared to other major states in India. Comparing the R0 and recovery
rate from Figure 4, we have studied the optimal control strategies for these
states. For the parameter values of Table 1, we have R0 = 10.3514β. Table
3 shows the relation between R0 and disease transmission rate β for the
six-state of India.

For the optimal control problem (10, 11) and (12) the value of R0 be-
comes

17



Table 3: State wise values of β and recovery rate depending on R0

State R0 β Recovery rate (%)

Bihar 2.10 0.21 33.61

Karnataka 1.62 0.1565 11.52

West Bengal 1.22 0.1179 10.99

Punjab 1.32 0.1275 0.92

Uttar Pradesh 1.33 0.1285 3.91

Tamil Nadu 2.01 0.1941 6.01

Figure 4: Top Panel: State-level COVID-19 effective reproduction rate in
major six state of India [13]. Bottom Panel: State-level COVID-19 effective
recovery rate in major six state of India [14].
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Figure 5: Optimal solution and optimal control for Bihar when R0 = 2.10
and T = 20 days with recovery rate 33.16%.

Rc0(u1, u2) =
(1− u1)β

(k2 + γ + µ)

[
me +

γmi

(k3 + α+ µ+ u2)

+
γα(1− θ)mir

(k3 + α+ µ+ u2)(k4 + η1 + µ)

+
γαθmiu

(k3 + α+ µ+ u2)(k5 + η2 + µ)

]
.

Assuming u1(max) = 0.9 and u2(max) = 0.9 we get Rc0(u1max, u2max) =
3.7681β.

It is clear that for any possible value of β, Rc0(u1max, u2max) < 1 holds.
This means that the maximum implementation of social awareness and

adequate common drug use should control the epidemic. It is also clear
that u1max and u2max can be reduced when the disease progression is under
control.

The following figures (Figure 5 - Figure 16) represents the outcomes of
this seven compartmental SEIQR model for different states in India for 20
days and 40 days control respectively.

Figure 5 and Figure 6 show the results of Bihar COVID-19 cases in
computations for optimal control strategies for the upcoming 20 days and
40 days respectively. These figures demonstrate that during 20 days time
period the recovery rate increases and new infection number reduces to less
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Figure 6: Optimal solution and optimal control for Bihar when R0 = 2.10
and T = 40 days with recovery rate 33.16%.

than 100. If we extend the time period to 40 days the newly reported cases
reduce below 10.

Figure 7 and Figure 8 are show the results of Karnataka COVID-19
cases in computations for optimal control strategies for upcoming 20 days
and 40 days respectively. Figure 7 and Figure 8 are reveals the recovery rate
increases during 20 days time period and new infection number reduces to
less than 250. But the time period of control is to be extended 40 days then
the newly reported cases reduce below 5.

For the COVID-19 cases of West Bengal, computations for optimal con-
trol strategies for approaching 20 days and 40 days respectively are shown in
Figure 9 and Figure 10. These figures are demonstrate that during 20 days
time period the recovery rate increases and new infection number reduces
to less than 400. When we draw out the time period of control to 40 days
the newly reported cases reduce below 10.

Figure 11 and Figure 12 are show the results of Punjab COVID-19 cases
in computations for optimal control strategies for upcoming 20 days and
40 days respectively. These figures demonstrate that during 20 days time
period the recovery rate increases and new infection number reduces to less
than 20. If we extend the time period of control to 40 days the newly
reported cases reduce below 3.

Figure 13 and Figure 14 show the results of Uttar Pradesh COVID-19
cases in computations for optimal control strategies for upcoming 20 days
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Figure 7: Optimal solution and optimal control for Karnataka when R0 =
1.62 and T = 20 days with recovery rate 11.52%.
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Figure 8: Optimal solution and optimal control for Karnataka when R0 =
1.62 and T = 40 days with recovery rate 11.52%.
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Figure 9: Optimal solution and optimal control for West Bengal when R0 =
1.22 and T = 20 days with recovery rate 10.99%.
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Figure 10: Optimal solution and optimal control for West Bengal when
R0 = 1.22 and T = 40 days with recovery rate 10.99%.
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Figure 11: Optimal solution and optimal control for Punjab when R0 = 1.32
and T = 20 days with recovery rate 0.92%.
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Figure 12: Optimal solution and optimal control for Punjab when R0 = 1.32
and T = 40 days with recovery rate 0.92%.
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Figure 13: Optimal solution and optimal control for Uttar Pradesh when
R0 = 1.33 and T = 20 days with recovery rate 3.91%.

days

0 10 20 30 40

s
ta

te
s

×107

0

1

2

S(t)

days

0 10 20 30 40

s
ta

te
s

×105

0

2

4

E(t)

I(t)

days

0 10 20 30 40

s
ta

te
s

×104

0

5

10

I
r
(t)

I
u
(t)

days

0 10 20 30 40

s
ta

te
s

×105

0

5

10

15

Q(t)

R(t)

days

0 10 20 30 40

s
ta

te
s

0

0.5

1

u
1
(t)

days

0 10 20 30 40

s
ta

te
s

0

0.5

1

u
2
(t)

Figure 14: Optimal solution and optimal control for Uttar Pradesh when
R0 = 1.33 and T = 40 days with recovery rate 3.91%.
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Figure 15: Optimal solution and optimal control for Tamil Nadu when R0 =
2.01 and T = 20 days with recovery rate 6.01%.

and 40 days respectively. These figures demonstrate that during 20 days
time period the recovery rate increases and new infection number reduces
to less than 150. But we extend the time period of control to 40 days the
newly reported cases reduce below 5.

Figure 15 and Figure 16 show the results of Tamil Nadu COVID-19
cases in computations for optimal control strategies for upcoming 20 days
and 40 days respectively. These figures demonstrate that during 20 days
time period the recovery rate increases and new infection number reduces to
less than 300. If we extend the time period of control to 40 days the newly
reported cases reduce below 10.

Comparing the numerical outcomes in Figure 5 to Figure 16 it is clearly
observed that the basic reproduction number R0 and the recovery rate has
a great impact to control the disease. From these findings, we can conclude
that for a lower R0 the outcomes would be considerably better, and our
computation confirms this assumption. For all cases, the optimal control u∗1
and u∗2 should be kept as high as possible during the control period. We
should keep the optimal control u∗1 and u∗2 at its high from starting of the
control policy until a considerable decrease of the infection level is reached.
After that, we can reduce its level to its minimum value to avoid other
complications. In the case of 20 days time period the optimal control u∗1
should be maximum during the first 2 weeks and then it is slowly decreasing.
However, the case of 40 days the optimal control u∗1 should be maximum for
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Figure 16: Optimal solution and optimal control for Tamil Nadu when R0 =
2.01 and T = 40 days with recovery rate 6.01%.

one month. But in both cases the optimal control u∗2 should be maximum
during the total control period.

8 Discussion and Conclusions

In the present scenario, there is neither vaccine nor COVID-19 specific drug
available. A non-pharmaceutical intervention like lockdown, quarantine,
maintain social distancing are indirect protective measures during this time
period. In view of this, we have proposed a seven compartmental SEIQR
type model that describes the spread of COVID-19 virus in a human pop-
ulation of variable size are considered. The models differ by the infection
rates that describe virus transmission.
In our analytical finding shows that if the basic reproduction number R0 < 1
the system attains its disease-free state and if R0 > 1 the system moves to-
wards its endemic state. We have derived the sensitivity index of the model
parameters. From these findings, we have observed that R0 reduces as the
screening/testing along with the quarantine rate of infected individuals in-
creases. Thus screening/testing along with quarantine effect plays a major
role to control the disease progression.

To understand the non-pharmaceutical and pharmaceutical effect to con-
trol COVID-19 infection, we applied the optimal control theory to a seven
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compartmental system of differential equations. Our main objective is to re-
duce the number of new infections and increase the recovery in the regions
while the cost associated with the non-pharmaceutical (lockdown, quaran-
tine, and distribution of mask, gloves, and other necessary arrangements)
and pharmaceutical use in a particular time period. In view of that, we have
formulated the characterizations of optimal control strategies. We have con-
sidered the first control u1(t) which represents the non-pharmaceutical inter-
vention like social awareness in form of social distancing, cover all cuts, wear
full cover shoes, gloves, use the shirts with long sleeves, masks, hygiene, sen-
sitization process. The second control u2(t) represents the pharmaceutical
intervention like use common effective drugs (azithromycin, HCQ, antipro-
tozoal with Doxycycline).

Our simulation considered 20 days and 40 days time period since we want
to observe the quarantine effect. Numerical simulation showed that with our
control strategies the percentage of new infection along with reported and
unreported infection reduced dramatically. Also, the percentage of recovery
increases exceptionally during the control period. However, the results very
much dependent on the basic reproduction number of the region. If the basic
reproduction number is greater than 1.5, then a minimum of 40 days control
should be maintained. Otherwise, 15 days to 20 days control is sufficient for
controlling the disease. Therefore, social awareness, using gloves and musk,
sensitization is key for the control of COVID-19 infections.

We also studied the impact of quarantine and screening/testing factors
over the control strategies and outcomes. Quarantine of migrant individuals,
isolation of undiagnosed individuals, door to door screening, and testing also
plays a critical role in optimal strategy making.

It is essential to have reported infected individuals under pharmaceutical
control through hospitalization for the purpose of quick healing. Thus rapid
screening and testing are beneficial for these control strategies and give a
better outcome.

Real data on the cost of screening, testing, quarantine arrangement, as
well as penalties on overdosing drugs will be helpful to provide the optimal
cost-effectiveness analysis for this pandemic.
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