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An Efficient Test Time Model for Optimizing 
Tessent SSN for a 3D Design

Abstract—This paper presents an efficient scheme to calculate 
and optimize test time when using Tessent Streaming Scan Network 
(SSN) by bypassing the traditional vendor solution of patterns re-
targeting process. SSN retargeting process requires stand-alone 
patterns of all partitions present in SSN network and availability of 
full chip SoC Netlist model which is too late in the design cycle. 
Many “case” studies can be performed for estimating test 
volume/test time, easily without hardware changes using the 
described algorithm in the paper. This methodology helps to update 
test network design for optimal test time and volume in very early 
phase of the project, thereby reducing iterative and late change costs 
for DFT design. 
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I. INTRODUCTION 

With each generation, SoC designs have increased in size and 
complexity. To maintain same or lesser tester time & tester 
volume than previous generation SoC designs, the use and 
optimization of a scan test system fabric is a must. Test 
volume directly depends on test fabric design spec therefore, 
it is required that the design team analyze, estimate, and react 
to test time growths in a timely fashion and do the necessary 
changes to the test fabric spec early in design cycle. With 
classical designs this meant tuning the mapping and muxing 
of test-port IOs to individual scan endpoints throughout the 
design process as partitions were added, deleted, or changed. 
Streaming Scan Network (SSN) is a new structural scan test 
system from Siemens which promises a portable and scalable 
architectural solution and eliminates top-level IO mapping 
and muxing. It delivers efficient scan vectors by enabling 
parallel testing of all partitions in the design [1] and 
decouples the size and design of the test-port from the internal 
scan construction. However, using only the tooling supplied 
by the vendor, scan pattern volume and test time estimation 
with SSN fabric requires a SoC-level ATPG re-targeting flow 
which takes too long due to the late availability of full chip 
soc netlist model and results in late feedback to design. In this 
paper we would like to share a methodology for estimating 
pre-silicon pattern volume and test time for any given SSN 
specification without the use of a retargeting flow. We assess 
test time with various bus widths, regrouping of partitions 
across SSN networks based on bandwidth usage, and the 
results of optimization of the SSN network distribution. We 
are using SSN architecture for an SoC scan testing, and this 
paper details the method we have implemented to optimize 
test time in very early phase of design cycle. 

 

II. SOC SSN IMPLEMENTATION OVERVIEW  

In our 3D stacked SoC design, we have a top-die which 
contains IO buffers that are routed as package balls using 
micro-bumps (ubumps) and through-silicon vias (TSV) 
routing through the bottom/base-die [2]. The top die and base 
die contain multiple physical partitions, all of which must be 
tested via scan.  In this design, we created four parallel SSN 
networks to address all the partitions: the Top Left network 

(TLNW) and Top Right network (TRNW) for top-die, and 
the Base Left network (BLNW) and Base Right network 
(BRNW) for base-die, as shown Figure 1. Parallel networks 
are created to ease the scan routing and timing convergence, 
as we have limited routing channel availability and in due 
consideration of the IO placement. For TLNW and TRNW 
the SSN data bus and clock inputs are routed from package 
balls through TSV, to probe-able ubumps in base-die, through 
IO buffers in top-die and onto the SSN fabric in the top die. 
We have added repeater stages for SSN data bus out of 
TLNW and TRNW prior to IO buffers in the top-die; these 
are routed to ubumps in the base-die and TSVs to package 
balls. The base die networks are available independently via 
probe-able ubumps at sort but are connected only through the 
top die network after die stacking. For  package-level testing 
the base-die sort content must be updated through retargeting 
flows to comprehend the additional repeater stages in top-die. 
Figure 1 depicts custom muxing logic in the top die to stitch 
the TLNW into the BLNW and similarly for TRNW into 
BRNW.  By enabling this feature, we convert 4 parallel SSN 
networks to 2 parallel SSN networks during package testing. 
This helps evaluate future SoC designs where we could be 
limited by IO buffer availability  which is beyond the scope 
of this paper. 
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Figure 1: SoC SSN Arch Overview 

 

In legacy GPIO flows, partitions always have different shift 
counts even with good planning. This results in a lot of 
wasted bandwidth due to padding that is required to 
synchronize the capture cycles across partitions. SSN 
alleviates this wastage by varying the amount of data sent to 
each partition and enabling independent captures between 
partitions. This is done by using a packet-based system where 
each packet contains a variable amount of scan data for each 
partition under test. Packets can span multiple test-port clock 
cycles and each controller manages its transitions between 



shift and capture modes independently, which reduces the 
droop effect of scan shift. The number of bits allocated for 
each SSH is dependent on the total amount of data it must 
consume for the duration of the test but cannot exceed the 
number of bits used for one shift operation [3].  Additionally, 
each packet delivered on the network must contain at least 
one bit of data for every SSH block that is enabled for that 
test [3]. The final test volume is dependent on the 
configuration of all of the enabled SSH blocks in the system: 
each blocks’ total shift cycles and their channel counts. A 
model to convert these inputs into a test volume estimate can 
be used to quickly provide feedback on the effects of a 
channel count change, partition-level content truncation or 
growth, and to estimate test time before a full retargeting run 
can be completed. Under a standard flow, partition-level 
ATPG patterns are generated, then retargeted to SoC level, 
with all partitions enabled in parallel. This provides a test 
time estimate and details about the packet utilization. We can 
analyze the resulting pattern and regroup the partitions under 
a single SSH and/or adjust the SSN bus width for each 
network. This information is fed into SSN RTL spec and new 
RTL is then generated. The final optimized test time and 
optimized network can be achieved within a few iterations. 
The biggest drawbacks are that the iteration loop is very long, 
intrusive to the design cycle, and each iteration requires a new 
model for retargeting, as shown in the Figure 2. 

 

 
 

Figure 2: Traditional SSN design optimization flow 

 

With offline modeling for test time and SSN network 
optimization we bypass the retargeting flow altogether and 

feedback to design is much faster and minimizes the design 
rework, with shorter iterations as shown in Figure 3. We can 
evaluate test time for other SSN grouping and EDT channel 

count permutations without making RTL or hardware 
changes, and use the results for the final optimal network. 

 

 
 

Figure 3: Optimized SSN Modeling flow  

 

SSN Packet sizing and Wastage Calculation: 

 
Our vision was to create a spreadsheet model that could be 
used for rapid what-if evaluation of changes to the design and 
content: EDT channel counts, capture/pattern count 
truncation, chain count adjustment, SSH sharing, etc. We 
would then run partition-level ATPG to get initial capture 
count estimates and permute variables until an optimal 
solution was found, at which point the changes could be 
committed to the RTL design. The key to this evaluation was 
building the algorithm which determines the total packet size 
and number of bits in that packet that are used by each 
partition. Table 1 shows the details of pattern volume of the 
9 partitions in TLNW, including the number of scan 
captures/Patterns (Np), number of shifts per capture for 
load/unload (SLp) and the EDT channel count (Cc). We used 
Symmetric EDT for all partitions and did not use the on-chip 
compare feature. The “# Patterns” (Np) multiplied with “Max 
Shifts per load” (SLp) provides the approximate “shifts/loads 
required” (TotalL) for each partition, which can be multiplied 
by the “Channel Count” (Cc) to get the ideal number of input 
bits (IIb) required for each partition’s test. Because each 
packet can contain at most one shift for each SSH, the number 
of packets required is constrained by the partition with the 
highest number of loads (MaxTotalL)required, which in this 
example was partition “H” @9.41Million loads. We then 
calculate the number of bits per packet that should be sent to 
each partition using the ratio of its TotalL vs the now-
determined MaxTotalL packet count, multiplied by its 
channel count (Cc), (TotalL / MaxTotalL) * Cc which is shown 



here in the “# bits per packet (ideal)” BPPi column. Fractions 
are always rounded up to determine the actual number of bits 
used for each SSH, providing us the final “Real bits per 
packet” BPPr.  The actual number of input bits delivered by 
the SSN bus (SSNIBr) for each partition is calculated by 
multiplying the partition’s “# bits per packet (real)” with 
“Total #packets to send” (BPPr * MaxTotalL). For example: 
partition “I” has SSNIBr input volume of 9.4 megabits. 
Wastage percentage (Wp) is then calculated based on the total 
input bits ideal IIb (0.57M) vs total SSN bits real SSNIBr 
(9.41M) for each partition. This results in maximum wastage 
of 94% for partition “I” in this network. Similarly, Wasted 
Bits (Wb) per partition is determined as delta between SSNIBr 

and IIb as shown in Table 1. Understanding this algorithm 
aids in determining the right solution to improve the overall 
efficiency of the system. In this case SSN has done a good 
job of controlling data delivery and the overall waste is fairly 
small at just 8%, and the test volume (and thus test time) is 
dominated by partition H. Since SSN can easily support 
internal changes in partition EDT channel counts without 
affecting test-port or fabric design, a range of options are 
available at relatively low design cost to minimize vector 
volume. It takes just seconds to do what-if analyses such as 
considering the effects of doubling the channel and chain 
count for partition H assuming no increase in 
captures/#patterns (4% reduction in total test volume), or of 
reducing the number of channels allocated to partitions with 
low capture/#pattern counts, such as “F” or “C” (which has 
no effect). 
 

Table 1: TLNW SSN packet size and wastage calculation 

 
 

 
 
This calculation of wasted bits and wasted bits percentage per 
partition can be extended to all networks using simplified 
formula as shown below. 
 
Wp = (1 – (IIb/SSNIBr)) *100 
 
Substituting for IIb in above equation we get: 
Wp = (1 – ((TotalL * Cc)/SSNIBr)) *100 
 
Substituting for TotalL and SSNIBr we get: 

Wp = (1- ((Np*SLp*Cc)/BPPr*MTotalL))) *100 
 
Similarly Wasted Bits Per partition is determined by,  
Wb = (BPPr*MTotalL) – (Np*SLp*Cc) 
 
Table 2 below shows the TRNW’s pattern volume of all 17 
partition as estimated by our model using the algorithms 
described earlier. In this case also SSN has done a good job 
of controlling data delivery and the overall waste is fairly 
small at just 8%, but the test volume (and thus test time) is 
dominated by partition “Q”, which requires (MaxTotalL ) of 
11.62M loads. 
 

Table 2: TRNW SSN packet size and wastage calculation 

 
 
 

Table 3 details the test time calculation for both TLNW and 
TRNW assuming the SSN Bus width allocated as 20 in/20 
out and omitting SSN IJTAG setup test time which would be 
a be constant for the network and cannot be modulated by 
internals of the network. Test time is approximated here by 
dividing the total pattern volume (bits) with the bus width to 
get pattern vectors @ SSN width, and then multiply by bus 
frequency. Calculations are done for both 100mhz and 
200mhz bus frequencies. With our estimated SSN bus POR 
@200mhz, test time for TLNW is ~117ms and TRNW will 
be ~ 322ms. In our architecture both these networks are in 
exercised in parallel, so the maximum test time is limited by 
TRNW (322ms).  

 
Table 3: Test Time calculation for given SSN bus width 

 



 

III. RESULTS AND SUMMARY 

 

TRNW is the test time limiter for Top-die SSN scan testing, 
with partition “Q” requiring 11.62M packets of desired bus 
width of 111 in/out bits, while the TLNW is idle for more 
than 60% of the scan testing. We evaluated the below options 
to optimize the test time. 

1. Rebalancing TRNW vs. TLNW, by moving some of the 
physical routable partitions to TLNW 

2. Increasing the SSN Bus Width by using additional IOs 
3. Combining adjoining partitions into a single SSH, 

targeting those with a large % of wastage bits 

In option 1, we moved partitions R thru Z into TLNW which 
are physically accessible without any timing limitations. 
Using our test time model, we observed ~33% reduction in 
test time(~107ms). There is an ~68ms of test time increase 
for TLNW but is not of concern since it is not a limiter as 
both TLNW, TRNW runs in parallel during silicon scan 
testing. As seen in the Table 4 below in this option, the input 
bits for the TLNW changed to 79 as ideal case. With the 
partition moved to TLNW the total wastage of bits has 
reduced considerably. In option 2, we evaluated the 
feasibility of sharing leftover IO’s and able to increase the 
SSN Bus Width from 20 in/out to 30 in/out. Using our test 
time model, we were able to quickly evaluate the test time 
benefits and was able to roll in the required design changes 
without waiting for ATPG re-targeting flow results. 
Similarly, we have evaluated for base-die SSN networks but 
haven’t found any significant improvements that would 
dictate a design change. 

 
Table 4: Test time calculation for given SSN bus width 20,30 and with 

TL NW, TR NW replan 

 
 

IV. CONCLUSIONS AND FUTURE PLAN 

The SSN Bus Width and Test time optimization model which 
we created for our SoC design is scalable and re-usable for 
all SoC’s which are using the SSN scan solution. This can 
also model asymmetric/dual EDT which can be useful when 
SSN is operating in on-chip compare mode. This modeling 

could be automated to populate the input data such as number 
of captures/Patterns, EDT channel count, max loads per 
partition by directly reading such information from design 
and atpg pattern generation area. We have also observed that 
Tessent SSN retargeting introduced bandwidth throttling that 
limited the usefulness of two parallel independent networks 
during retargeting flow as shown in Figure 4. Ideal scenario 
for two independent SSN networks patterns re-targeting as 
separate runs shown in Figure 5. More optimized testing 
solution requires enhancement to vendor tooling such that 
multiple parallel networks can independently tested as 
depicted in Figure 6.  We anticipate more designs to adopt 
SSN with these enhancements. 
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Figure 4: NW1, NW2 pattern retargeting by Tessent tool 
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Figure 5: Standalone NW1, NW2 pattern re-targeting 
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Figure 4: Ideal scenario and requirement for NW1, NW2 pattern 
retargeting 
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