
EasyChair Preprint
№ 1681

Contentious Live-Tracing as Debugging Approach
on FPGAs

Christopher Blochwitz, Raphael Klink, Jan Moritz Joseph and
Thilo Pionteck

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 16, 2019

Contentious Live-Tracing as Debugging Approach
on FPGAs

Christopher Blochwitz, Raphael Klink
Universität zu Lübeck

Institute of Computer Engineering
23562 Lübeck, Germany

Email: {blochwitz}@iti.uni-luebeck.de

Jan Moritz Joseph, Thilo Pionteck
Otto-von-Guericke-university Magdeburg

Institute for Information Technology and Communications
39106 Magdeburg, Germany

Email: {jan.joseph, thilo.pionteck}@ovgu.de

Abstract—This work presents a new approach for monitoring
and debugging RTL logic on FPGAs—Live-Tracing-Logic. The
design combines the two most common approaches for debugging
RTL logic, Scan-Chains and Trace-Buffers, while avoiding their
disadvantage: First, slow and clock-controlled scans of the Scan-
Chains, second, a limited time period for tracing of Trace-Buffers,
respectively. The Live-Tracing-Logic connects trace-buffer mod-
ules serially, monitors signal events continuously, transmits the
collected data to the host system via a high bandwidth PCIe
interface, and converts the data into a VCD file. Furthermore,
an automatic tool flow is introduced, which requires only two user
interactions: First, using pragmas, second, starting a TCL script.
The Live-Tracing-Logic is evaluated for different workloads and
different tracing modes. The results show that the architecture
has the capacity to continuously trace up to 3.10 GB/s of data
and is only limited by the PCIe interface. Furthermore, the Live-
Tracing-Logic is suitable for multi clock designs and utilizes up
to 70 % less resources in comparison to the Integrated Logic
Analyzer of Xilinx.

Keywords—Debugging, Tracing, Logic Analyzer, Hardware,
Field-Programmable Gate Array

I. INTRODUCTION

Nowadays, hardware developers have to cope with designs
which are increasingly demanding, and, furthermore, the cor-
rectness of these designs must be proved. With simple designs,
this can still be ensured through simulation or intuitive test
scenarios. But for more complex systems, automatic tests,
automatic debugging, and verification are indispensable at all
stages of development.

Testing and debugging is not always possible in simulation
environments, in particular when the system consists of several
units, whether software – hardware or hardware – hardware,
which interact which each other and must be tested. It is also
possible that the design is so complex [1] that the effective
simulation frequency drops so much that a debugging is not
even possible for time reasons.

For testing and hardware debugging, additional elements
are required, which collect data and evaluate the functionality
of the hardware design. Since it is not possible to verify all
functions of a hardware design on its I/O pins, this must
be done within the design/on-chip. FPGA vendors, therefore,
provide so-called Integrated Logic Analyzers (ILA) [2], which
require a relatively small effort to check/debug a hardware
design. These Logic Analyzers utilize resources of the FPGA
and should be applied accordingly. Further, only a certain

number of clock cycles can be observed and stored for a
defined period of time. The period corresponds with the size
of the used memory and its maximum is 131072 entries for
Xilinxs FPGAs [3]. The monitoring of such a time period is
activated by configurable triggers. If the on-chip memory is
completely filled with tracing data, it must be read out via an
external interface. After reading out the memory, the signal can
be observed again. Typically, the external interface is JTAG,
which is very slow in relation to the high volume of data
produced by the hardware design. Hence, during the time of
the memory readout, states can not be observed which may be
of interest for the developer.

This paper presents a design that logs data continuously and
forwards it off-chip to a host system. Any number of signals
can be observed and there is no limitation of the length of the
observation time. The recorded data are forwarded on a FIFO-
based chain to any possible external interface, which also only
needs a FIFO interface. To achieve high performance, we used
PCIe. In contrast to other approaches, it is possible to trace
continuously a huge number of signal changes, without reduc-
ing or controlling the user’s design clock. The modules can be
parameterized at runtime, which increases the flexibility and
makes a new synthesis unnecessary. The data are then received
by a host system and converted to the VCD (Value Change
Dump) [4] format, which can be displayed by all common
Waveform viewers. The whole tool flow is automatized and
only the signals of interest must be specified before starting a
TCL-script.

The rest of this paper is structured as follows. Section
II presents related works of generic and application-specific
approaches. In Section III, the Live-Tracing system and its
components are presented. The tool flow and the use of
the system is given in Section IV. Afterwards, the design
is evaluated (Section V) for different design sizes and its
utilization is compared to the integrated solution provided by
Xilinx (Section VI). This paper is concluded in Section VII.

II. RELATED WORK

Debugging is still challenging and requires many additional
tools, hardware, and knowledge. Debugging RTL logic on an
FPGA is a special case because it allows to integrate debugging
and tracing units on-chip. In most cases, the FPGA has an
interface (JTAG, UART), which is indented for debugging and
tracing. These interfaces also mostly allow a software tracing

FPGA

Design-Under-Test

&
FF

& FF

FF

&

FF FFFF0
1

0
1

0
1

clk

scan in scan out

Fig. 1. Scan-Chain beside the DUT with its atomic element, the Scan-Cell

for integrated processors as the ARM Cortex or softcores (e.g.
Xilinx Microblaze). However, they are only off-chip interfaces
and the actual logic must be implemented by the developer. In
general, there are three different main approaches: first, the
Scan-Chain (Figure 1) consisting of so called scan cells—
a single pair of a multiplexer and a FlipFlop—, which are
connected in a chain to an external port. Basically, the chain
is a large shift register, where the input can be driven by the
previous cell or a debugging signal. The scan or debugging
is controlled by a software enabling and disabling the user’s
design clock, reading out the data, enabling the clock, and so
on. Especially for large designs, the approach is very slow
because all data must be shifted in the chain and the time
region of interest might be on a special signal combination,
which is very rare. Trace Buffers are used for the second
approach, signals are connected to an on-chip memory and,
after an event, the signal is captured for a specific number
of clock cycles, the so called window. The advantage of
trace buffers are: the clock frequency is not controlled by
the debugging system, which allows debugging interfaces and
protocols, which are not able to reduce the clock. Second,
the start of the windows can be defined by specific events, so
called triggers. After the window is filled, by capturing the
value of a signal for a given number of clock cycles, the data
can be read-out from the debugging interface. Obviously, the
limited window size reduces the significance of the trace and
a bug can possibly not be detected. If larger windows or more
signals are needed, the ILA uses more on-chip memory which
results in a high utilization. Most of the vendors like Xilinx [2]
and Altera [5] use trace buffers in their debugging tool flow.
The third approach is hybrid and combines the scan chain
controlling and the trace buffers with an additional external
hardware logic analyzer. On-chip trace buffers are used, which
trace signals in parallel and transfer the data to the external
logic analyzer, which, on the other hand, controls the trace
buffers and the clocks.

There are also different research works for debugging
FPGAs or System-On-Chips with an integrated programmable
logic. Goeders and Wilton [6] and Pinilla and Wilton [7]
introduce on-chip debugging systems for high level synthesis.
The approach has the ability to remap the variable of the
high level language to its counterpart signal on the FPGA,
hence, a convertible solution for HLS debugging. The dynamic
tracing architecture of Goeders et al. recorded up to 127 times
more signals in comparison to a classical embedded logic
analyzer. Monson and Hutchings integrated so called Event
Observability Ports, which enable the tracing only if a signal

change is detected on this specific port. They also used their
system for debugging high level systems and capture 2.0 up
to 3.88 more events than a standard embedded logic analyzer.

A different approach for reducing the debugging time of
the developer was introduced by Hung and Wilton [8]. They
integrated incremental trace buffers for every signal which
was supposed to be traced after one debugging cycle. This
method needs no re-synthesis of the circuit and trace buffers
inserted by placing and routing on free resources of the
FPGA. Hence, the approach allows up to 98 times faster
debugging cycles and makes the debugging more efficient.
An overlay debugging architecture was published by Eslami
and Wilson [9], which is integrated after the user design
is placed and routed. The overlay uses free resources of
the FPGA and triggers can be reconfigured on debugging
time, which allows a more flexible use of the debugging
system and no additional synthesis is needed. Jassi et al. [10]
debugs System-On-Chips with hardware-software-co designs
automatically by introducing graph grammars and the insertion
of vendor specific intellectual properties for monitoring the
RTL logic. The debugging system was proved by a video
streaming application based on an AXI interconnect.

A brute force approach is used by Kourfali and Stroobandt
[11], which connects all signals to a large multiplex network
on routing resources after the place and route of the user
design is finished. At the endpoint of the multiplex network,
a tracing logic is placed, which traces and transfers the logic
to an external debugging system. The multiplex network is
controlled by the debugging system by using reconfiguration
and allowing to select the signals of interest in the debugging
time. The debugging overhead to reconfigure the multiplex
network pays back after 5000 debugging cycles, but the area
overhead is very small so it is also possible for large designs
with a high utilization of the FPGA. A similar approach is
introduced by Panjkov et al [12], who also use a multiplex
network for all signals of a design. Contrary to the previous
approach, the multiplex network is connected to the tracing
logic of the Xilinx Integrated Logic Analyzer, which allows a
more comfortable and flexible use of the vendor’s tools and
scripts.

The start–stop approach of ul Hasan Khan and Göhringer
[13] combines the selection of the signals of interest, trace
buffers, and a clock controlling. It achieves a similar utilization
compared to Xilinx ILA and is not limited in window size.
Also, Panjkov et al. [14] use a start–stop approach, which
is compared to a scan-based and a trace-buffer system of
Xilinx. The results show that the overall debugging time can be
reduced, because fewer synthesis are needed in comparison to
ILA’s trace-buffers respectively the scan time is much smaller
than the chain-scan. In this paper a different approach—
Continuous Live-Tracing—is presented, which enables new
possibilities for debugging RTL logic and is also much faster.
The Live-Tracing design allows a continuous tracing by only
transmiting events, where the signal values change and a true
trigger condition are detected. The high bandwidth tracing
is realized by an internal Tracing-Logic and an external bus
interface (e.g. PCIe) to a host system, which do not require
a controllable clock to trace all the required data. Hence, the
Tracing-Logic allows to debug interfaces or designs, which
requires a high and stable clock over a long time period.

FPGA
Design-Under-Test

&
FF

& FF

FF

&

Tracing Module

cl
k

bu
s

tr
ig

ge
r

Tracing Module

cl
k

bu
s

tr
ig

ge
r

chainchain

Tracing Controller ctrl ctrl

data

ctrl

ext. Bus

Host
(PCIe)

Fig. 2. Overview of the Live-Tracing-Logic and its integration into the Device-Under-Test. Furthermore, the external bus interface and the host are shown.

III. SYSTEM OVERVIEW

The Live-Tracing design allows a continuous tracing of
signal events with a high bandwidth, which is presented in
this section. It consists of four main parts, which can be seen
in Figure 2: First, the Design-Under-Test (DUT), which is the
user’s design to debug. Second, the Live-Tracing-Logic which
is connected to signals of the DUT and captures the data. Third,
the host system to which the FPGA is connected and where
the data is converted into a VCD file, and at last, an any bus
interface between the Live-Tracing-Logic and the host. In our
case, we use the PCIe IP core Xillybus [15] with a maximum
bandwidth of 3.5 GB/s for each direction.

The debugging system must adapt different requirements
of the developer and, therefore, a flexible solution is needed.
Hence, the Live-Tracing-Logic is structured into two module
types: The Tracing-Module, which is connected to a single
debugged signal of the DUT. Multiple Tracing-Modules are
connected to each other via a parameterizable chain and at the
end, to the Tracing-Controller, which is the connector for the
bus interface (Figure 2). Furthermore, there are some control
signals to the Tracing-Modules to configure them on debugging
time. The communication between the chain’s member and
the bus interface is realized by a packet-based protocol. This
allows a high bandwidth without arbitration time for the bus.

A. Tracing-Module

The Tracing-Module is one of the two main units of the
Live-Tracing system. The module (Figure 3) is connected in a
chain between two other Tracing-Modules (except for the first
and last module) and, therefore, it has a chain input (connected
to the Chain-FIFO) and output port. The module has unique
identifier, which is required for identifying the source of the
trace data. The data port is connected from the debugged
signal to a FIFO (hereinafter referred to as Data-FIFO) with a
corresponding width. Both FIFO depths are parameterizable:
the Data-FIFO can be customized for every instance of the
Tracing-Module and the Chain-FIFO depth is the same for all
instances. The Data-FIFO has a clock-independent interface,
which allows to trace signals with a different clock than the
chain clock. Furthermore, the Data-FIFO is asymmetric to
adapts the width-parameter of the chain. The write enable-
Port of the FIFO is connected to none, one, or multiple trigger
signals of the DUT. Every time the trigger logic is high, a
snapshot is taken by setting the write enable high for one clock

cycle with an additional time-stamp. If no trigger condition is
defined, the Tracing-Module takes a snapshot of any change
on the bus. The trigger logic is configurable at runtime by the
Tracing-Controller, which will be described in more detail in
the following.

The main task of the module is to send the captured data to
the Tracing-Controller. There are two possible actions: First,
forward a packet from a previous module to the chain output
or create a packet out of the individual data of the Data-FIFO.
There are different modes to decide which of the two FIFOs
is read. To switch between both FIFOs, no additional clock
cycle is needed.

Tracing-Modes:

• First Chain-FIFO — This mode prioritizes the Chain-
FIFO and ensures that data is received from the tail
of the chain on a busy bus.

• First Data-FIFO — This mode prioritizes the Data-
FIFO and ensures that data is received from the head
of the chain on a busy bus.

• Round-Robin — In case both FIFOs have data, the
forwarding switches between both FIFOs after every
packet.

• Fill-Level — The FIFO with the higher fill level will

chain

Tracing Module

Chain FIFO

ctrl

chain

ctrl

mask

comparator

{or, and}

trigger [0..n]

wr_en

datatrace_clk

Data FIFO
clk

Fig. 3. Tracing-Module with the Data- and Chain-FIFO, Trigger-Logic beside
the configuration registers, inner logic for package generation, and the chain.

be read, which allows to react on bursts in the DUT
and balances the chain.

Runtime-Configuration: The trigger logic can be config-
ured during runtime by sending a message from the host via
the Tracing-Controller. Therefore, a small chain—with a single
input register—from module to module is implemented. The
module has an input register and an output (see Figure 3),
analyzes the packet, and, if the destination ID of the packet
is equal to its own, the data is written into the configuration
register of the trigger logic, otherwise the packet is forwarded
to the next module. The first parameter of such a configuration
message is a mask of the trigger inputs, which allows to de-
/activate specific triggers. The advantage of the implementation
is that the developer can relatively generously define triggers
and no reimplementation is needed for other triggers. Second,
the value of the comparator register which is compared with
the actual value of the trigger. The third parameter switches
between the or and and concatenations of all trigger signals.
This allows more complex trigger cases.

B. Tracing-Controller

The Tracing-Controller is placed between the host bus and
the tracing chain. The connection to the host bus consists of
two FIFOs, one for every direction. As mentioned before, the
connection with the chain is also FIFO-based. The Tracing-
Controller has two main tasks: First, forward the data of the
Chain-FIFO to the host bus. Second, receive control-messages
from the host and process of these messages. There are three
types of configuration messages: First, a software reset from
the host is received and all the Tracing-Modules are reset by
a reset signal. Second, enable or disable the tracing, which
can be used to reduce the data volume and only capture a
smaller time window, which is the region of interest. Third, the
forwarding of the trigger parameter for the Tracing-Modules.
Therefore, a configuration packet is forwarded to the Tracing-
Modules via the control chain.

An additional functionality for the developer is to define a
maximum number of messages generated by the Live-Tracing-
Logic. This allows—similar to the tracing enable—to capture
only a region of interest.

C. Host-Software

The Host-Software is executed on the host system, where
the Live-Tracing-Logic is connected with an external bus, in
our case it is the Xillybus PCIe core (PCIe 3.0 8x) [15].
The software consists of several console commands for tracing
and controlling the Live-Tracing-Logic. The main task of the
software is to receive the tracing data from the logic and
convert it to an VCD-file [4]. The Value Change Dump is
a compact format, which only saves changes of a signal/value
in a chronological order along with a timestamp of the change.
Furthermore, a header of information such as the signal and
module names and some other meta information are added.
For the initializations, the software needs information about
the Live-Tracing-Logic, which is parsed from an XML file.
The XML file is created during the instantiation of the Live-
Tracing-Logic (see Section IV). Afterwards, the data is read
from a stream of the bus interface and converted to the VCD
file. This can be done during the execution and allows a live

view of the traced data. The mapping of the data to a traced
signal is done by comparing the information of the XML file
and the received ID of the packet (see also Section III-D).

As mentioned in Section III-A, the Live-Tracing-Logic can
be configured at runtime. Therefore, a console command with
the corresponding parameter of the module is executed and the
packet is transmitted from the host software to the module via
the bus interface. In the same way, a software reset is possible.

D. Chain Protocol

The communication between the host and the Tracing-
Modules is realized by a chain and an external bus interface.
Therefore, a packet-based protocol is used, which will be
explained in this section in detail. The packet frame of the
downstream (FPGA to host) can be seen in Figure 4 and
consists of a packet length field, which is adapted to the widest
traced bus on the chain. Further, an ID of the corresponding
Tracing-Module, a 1-bit Event-Flag, a 1-bit Overflow-Flag,
and the Payload is part of the packet. The length of the ID field
depends on the number n of Tracing-Modules in the design and
is calculated with dlog(n)e. The payload consists of a 24-bit
timestamp and the data of the traced bus with a corresponding
length. In the example of Figure 4, a design with 8 modules,
and a chain-width of 16-bit are used and the traced signal has a
width of 56 bit. In sum, the packet has 88-bit and consists of 6
flits. The remaining bits are padded with ’0’ and are excluded
on the host side. The event flag indicates a data packet with ’0’
and a special event with ’1’. The Overflow-Flag is activated if
the counter for the timestamp has an overflow. The meaning
of the flags in combination is shown in Table I. As can be
seen, the overflow of the timestamp counter generates packets
regularly, which allows a parallel conversion into the VCD file
(compare Section III-C).

packet length ID event o-�ow timestamp

trace data

trace data

trace data

trace data

timestamp

0000 0000

Fig. 4. Packet format of the Chain Protocol.

TABLE I. DESCRIPTION OF OVERFLOW- AND EVENT-FLAG

Event-Flag Overflow-Flag Description

0 0 data packet with tracing data
0 1 data packet with tracing data and in the same

clock cycle of capturing the bus, the timestamps
overflows

1 0 any other event, which information is stored in the
payload

1 1 overflow of the timestamps counter

However, there are some additional events which must be
handled. For example the stop message, which indicates that
all packets are transmitted after the tracing has been disabled.
There is also the possibility of overfull Data-FIFOs. Then
an error message is generated with a signal value of ’X’ –
unknown. Hence, the user can identify faulty traces in the VCD
viewer.

Code Rewrite

Tracing Logic Instantiation

Tracing Logic Synthesis

Net List Connection

Implementation

Pragma Parsing

DUT Synthesis

Executing Live-Tracing

XML

XML

VCD

Fig. 5. Tool Flow phases, their dependencies, and file generation. Only the
marked phases (person) require user interaction.

IV. TOOL FLOW

In this section, the tool flow from the declaration to trace
a bus up to the execution will be described, which is shown in
Figure 5. As mentioned in Section III, the system is flexible
and optimized to minimize the influence on the tested design.
Most parts of the tool flow for the integration of the Live-
Tracing-Logic is automatized by using TCL scripts.

Pragma Definition: At the first step, the user adds pragmas
trace bus() to the code (as shown in Listing 1) at every
position where a bus should be traced. The pragma has a
minimum of two parameters: Bus, which is the traced bus,
and the associated Clock. The Trigger parameter can be a list
of zero up to any possible number of signals (compare Section
III-A). If a more detailed configuration, especially the depth
of the Data-FIFO, is needed, the pragma configure bus() can
be added to the code. This allows a fine-grained configuration
for every single Tracing-Module.

-- trace_bus(Bus, Clock, Trigger*)
--
-- optional:
-- configure_bus(Bus, Data_FIFO_depth)

Listing 1. VHDL example als comment

Code Rewrite: The second step parses all source files
for trace bus() and rewrites the code by adding addi-
tional attributes for the traced bus, for example KEEP and
DONT TOUCH, which are necessary to keep the bus names
for the net list.

Pragma Parsing: Third, the parameter with further in-
formation such as the bit width are parsed and saved. In
addition, the information are exported in an XML-file, which
is necessary to instantiate the host software.

Design Synthesis: Forth, the design is synthesized into the
net list. In the fifth step, for every traced bus a Tracing-Module
is instantiated with the parsed parameters of step three.

Live-Tracing-Logic Instantiation: The Tracing-Controller
and all Tracing-Modules are connected in the sixth step and
so is the connection to the external bus, which is defined as
an FIFO interface.

Live-Tracing-Logic Synthesis and Net List Connection:
Seventh, the Tracing-Logic is synthesized and the connection
of the Tracing-Module with the signals of the net list is realized
by TCL commands. This procedure reduces the influence on
the synthesis quality and allows a custom configuration of the
synthesis process.

Implementation: At this point, the Live-Tracing-Logic and
the original design are merged and will be implemented for
the specific FPGA.

Executing Live-Tracing: In the end, the Live-Tracing can
be performed by executing the host software (see Section
III-C).

In conclusion, the user must only do two things for Live-
Tracing: Pragma definition and starting the TCL script. Hence,
this tool flow is easy to use and as flexible as the integrated
debugging system of Xilinx.

V. EVALUATION

In this section, the Live-Tracing system is evaluated for
different workloads and different modes, which has the goal
to determine the limit of the Live-Tracing-Logic. As mentioned
before in Section III-A, the Live-Tracing design is parameteri-
zable and so are the FIFOs of the Tracing-Module. On the one
hand, a larger FIFO depth means more tracing events can be
saved temporally, on the other hand an increasing utilization. In
this section, an optimal FIFO depth is determined for different
system workloads, modes, and numbers of Tracing-Modules.
Therefore, we implemented a test system with multiple Linear
Feedback Shift Registers as pseudo number generators (see
also Figure 6), which are traced by the Live-Tracing-Logic.
Every pseudo number generator has an output bus with a
width of 225 bits (in sum with the header 256 bits) and a
100 MHz clock. The Tracing-Module captures the data in
the case of a value change and has no dedicated trigger
implemented. The chain has a capacity of 3.2 GB/s, a width
of 256 bits, and is driven by a 100 MHz clock. Furthermore, a
high bandwidth PCIe bus (Xillybus) is used with a measured
maximum speed of about 3.38 GB/s in each direction. For
a variation of the workload, a configurable Injection-Rate is
implemented for every number generators. An Injection-Rate
of 10 % means that in every 10th clock cycle, the number on
the bus is changed and the value is captured. The injection
is equally distributed over all Tracing-Modules and, therefore,
the capacity of the whole system is tested. In the case that the
capacity of the Live-Tracing-Logic or a single Tracing-Module
is reached, a Data-FIFO overfull event (hereinafter X-event) is
detected and queued to be sent it to the host system. This is the
case when the Tracing-Module cannot empty the Data-FIFO
because of an accumulation of the chain or if the traced signal
triggers more events (e.g. a long burst) than are readable by
the Tracing-Module or bufferable by the Data-FIFO. Because
of the fluctuation of the PCIe interface, the driver, and the
host software, all tests are repeated five times and have a
relative standard deviation of 0.011 %. The deviation of PCIe
is caused by the serial protocol of the interface, where data

LFSR

Tracing
Module
#1

LFSR

Tracing
Module
#1

FPGA
Design-Under-Test

Tracing
Controller

data

ctrl

Tracing Module

cl
k

bu
s

tr
ig

ge
r

Tracing Module

cl
k

bu
s

tr
ig

ge
r

Tracing Module

cl
k

bu
s

tr
ig

ge
r

Tracing Module

cl
k

bu
s

tr
ig

ge
r

Xillybus
(PCIe)

LFSR LFSR LFSR LFSR LFSR LFSRLFSR

Tracing
Module
#7

LFSR

Tracing
Module
#6

LFSR

Tracing
Module
#8

LFSR

Tracing
Module
#5

LFSR

Tracing
Module
#4

LFSR

Tracing
Module
#3

LFSR

Tracing
Module
#2

LFSR

Tracing
Module
#1ctrl

chain

ctrl

chain

ctrl

chain

ctrl

chain

ctrl

chain

ctrl

chain

ctrl

chain

ctrl

chain

Fig. 6. Evaluation design consisting of 8 LFSRs as random number generator, the corresponding Tracing-Modules, and the Tracing-Controller.

TABLE II. FILL LEVEL OF DATA AND CHAIN FIFO IN RELATION TO INJECTION RATE. {FULLEST MODE, 512 FIFO DEPTH}

injection module #8 module #7 module #6 module #5 module #4 module #3 module #2 module #1
rate [%] data chain data chain data chain data chain data chain data chain data chain data chain

6 1 3 1 3 1 2 1 2 1 2 1 2 1 2 1 0

7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0

8 1 3 1 3 1 2 1 2 1 2 1 2 1 1 1 0

9 1 3 1 3 1 3 1 2 1 2 1 2 1 2 1 0

10 1 3 1 3 1 2 1 2 1 2 1 1 1 1 1 0

11 28 78 1 3 1 2 1 2 1 2 1 2 1 2 1 0

12 511 510 511 510 511 510 511 510 511 510 511 510 511 510 0 0

13 511 510 511 510 511 510 511 510 511 510 511 510 511 510 511 0

14 511 510 511 510 511 510 511 510 511 510 511 510 511 510 511 0

15 511 510 511 510 511 510 511 510 511 510 511 510 511 510 511 0

TABLE III. NUMBER OF THOUSAND X-EVENTS (OVERFILL DATA FIFO) AND MILLION RECEIVED MESSAGES. {FULLEST MODE, 512 FIFO DEPTH}

injection bandwidth module #8 module #7 module #6 module #5 module #4 module #3 module #2 module #1
rate theo. meas. X’evt msg X’evt msg X’evt msg X’evt msg X’evt msg X’evt msg X’evt msg X’evt msg
[%] [GB/s] [GB/s] [K] [M] [K] [M] [K] [M] [K] [M] [K] [M] [K] [M] [K] [M] [K] [M]

6 1.43 1.43 0 17.9 0 17.9 0 17.9 0 17.9 0 17.9 0 17.9 0 17.9 0 17.9

7 1.67 1.67 0 20.9 0 20.9 0 20.9 0 20.9 0 20.9 0 20.9 0 20.9 0 20.9

8 1.91 1.91 0 23.9 0 23.9 0 23.9 0 23.9 0 23.9 0 23.9 0 23.9 0 23.9

9 2.15 2.15 0 26.9 0 26.9 0 26.9 0 26.9 0 26.9 0 26.9 0 26.9 0 26.9

10 2.38 2.38 0 29.9 0 29.9 0 29.9 0 29.9 0 29.9 0 29.9 0 29.9 0 29.9

11 2.62 2.62 0 32.9 0 32.9 0 32.9 0 32.9 0 32.9 0 32.9 0 32.9 0 32.9

12 2.86 2.86 0.8 35.7 0.8 35.7 0.8 35.7 1.2 35.7 1.4 35.7 9.8 35.7 6.4 35.9 0 35.9

13 3.10 3.10 3.0 38.4 2.9 38.4 2.9 38.4 4.8 38.4 11.7 38.4 211.0 38.1 135.1 38.2 0.4 38.9

14 3.34 3.08 7.3 41.0 7.4 41.0 8.3 41.0 17.6 40.9 3 169.2 37.3 10 676.3 21.2 8 968.0 26.8 1.6 41.7

15 3.58 3.04 4.1 44.1 4.2 44.1 5.6 44.1 58.1 44.1 9 464.9 31.6 11 686.4 17.8 10 303.6 13.8 4.9 44.4

and control messages share the same link. The host system
running CentOS 7 and contain a 4 core Intel Xeon E3-1226
V3 with a base frequency of 3.3 GHz, 32 GB DDR3 memory,
and a Xilinx Virtex Ultrascale Evaluation Board - VCU 108.
The hardware design was implemented in VHDL using Xilinx
Vivado 2017.1.

Every test had a length of 3 s and was controlled by the
host software by enabling/disabling the tracing via the Tracing-
Controller. The stream from FPGA to host was written into the
RAM memory to ensure a maximum performance. Afterwards,
the trace was processed by the host software, the VCD file was
generated, and different parameters were analyzed – at first,
the fill level of every FIFO of the Tracing-Modules, second
the numbers of X-event messages because of overfull FIFOs,
and third, the overall bandwidth.

In Table II and III, the fill level of the Data- and Chain-
FIFO and the number of X-events for every module compared
to an increasing Injection-Rate is shown. The design includes 8
number generators and 8 Tracing-Modules (module #8 is con-
nected to the Tracing-Controller) with a fixed FIFO depth of

512 and the fullest first mode. As can be seen, up to an injection
rate of 11 %, no X-event messages are received, which means
that all data are traced successfully. The resulting bandwidth is
2.62 GB/s and all of the FIFOs their maximum fill level is up to
three values (except module #1). It can also be seen in Table
II that the achieved bandwidth of the PCIe is similar to the
theoretical bandwidth, up to an injection rate of 12 %, which
means that the system has the ability to transmit all traced data
to the host system. On the other hand, there is a gap between
the theoretical and the measured bandwidth for higher injection
rates and furthermore the maximum of Xillybus PCIe core is
not reached, which means that the host system cannot copy the
trace into the RAM fast enough. As mentioned, the bandwidth
for copying the trace data for the injection rate of 12 % is high
enough, but there are still X-events and the FIFOs are full,
which means that the system is limited by other processes.
One possibility is the unsteady copying of the host system
and, as a result, an overfull PCIe DMA system (64 MB). This
hypothesis can be supported by analyzing the timestamps of
the X-events, which are all within the first 100 ms and there
are also some tests runs with a injection rate of 12 % without

TABLE IV. NUMBER OF THOUSAND X-EVENTS (OVERFILL DATA FIFO) AND MILLION RECEIVED MESSAGES IN RELATION TO THE MODES.
{INJECTION RATE 15%, 8 MODULES, 512 FIFO DEPTH}

mode module #8 module #7 module #6 module #5 module #4 module #3 module #2 module #1
X’evt msg X’evt msg X’evt msg X’evt msg X’evt msg X’evt msg X’evt msg X’evt msg

[K] [M] [K] [M] [K] [M] [K] [M] [K] [M] [K] [M] [K] [M] [K] [M]

chain first 2 306.0 2.3 0.4 43.9 0.4 44.2 0.4 44.5 0.2 44.7 0.1 44.9 0 45.1 0 44.7

data first 0.1 44.9 0.2 44.8 0.4 44.8 0.6 44.7 0.8 44.5 0.6 43.9 2.1 43.2 2 844.2 2.9

round robin 0 44.9 0 44.9 0 44.9 2.5 44.8 21.2 44.7 111.8 44.4 10 394.8 14.3 10 578.0 14.1

fullest first 1.9 44.5 2.0 44.5 2.2 44.5 50.5 44.5 9 463.1 31.6 11 204.6 17.8 10 679.8 14.7 2.1 44.6

an X-event. Therefore, we implemented an additional design
with an optimized Xillybus IP core with a DMA buffer size
of 512 MB. It was demonstrated that a higher bandwidth is
possible by using a larger DMA buffer and the limiting point
is, up to now, the PCIe interface.

As can be seen in Table II, there is a hard cut between an
injection rate of 11 % and 12 %. Hence, the limit of the system
is a value of approximately 11 %, which is the last tested
configuration without X-events, which also has a low memory
requirement. Therefore, we recommend small FIFOs, which
have a lower hardware requirements. But the configuration of
the FIFOs’ depths must be customized for every specific case.
For example, for a traced bus with a higher clock than the
chain clock, which produces data by bursts, an integration of
a FIFO for buffering is indispensable.

In Table IV, the different modes are compared to each
other. The results show, that there is a difference between
the modes, if the Live-Tracing system is beyond its limit
(injection rate of 15 %). The data first and the round robin
mode prioritize the Data-FIFO and produce an accumulation
of the chain, which can be seen at the lower message number
of the Tracing-Modules of the tail (module #1). As expected,
the chain first mode prioritizes the tail of the chain and the
fullest first mode is more balanced with higher X-event rate
in the middle of the chain.

VI. UTILIZATION

In this section, we analyze the utilization of the Live-
Tracing-Logic (LUT, Flip-Flop, Block-RAM) for different
configurations. The configurations are compared with ILA. For
both the Live-Tracing-Logic and ILA, only the core modules
are compared without the external bus interface. For the first
configuration, the number of Tracing-Modules is varied and
the parameters are fixed to: fullest first mode, chain and Data-
FIFO depth of 512, and only one clock, which is shown in
Table V. The ILA was integrated with the additional trigger
function, which has a comparable functionality to the trigger
logic of the Live-Tracing system. As expected, the utilization
increases with the number of integrated modules. As can be
seen, the ILA needs from 1.5 up to 3 times more LUTs, and
2.4 up to 3.3 times more Flip-Flops. However, the number of
used Block-RAMs is lower for the ILA system. As mentioned
in Section V, if the chain is not fully occupied, the required
depths of the FIFOs are very small and, therefore, the required
number of Block-RAM can be reduced significantly. There-
fore, a design with FIFOs with the depth of 32 is implemented,
which uses distributed memories (see also Table V, entry 8
(short)).

TABLE V. UTILIZATION OF TRACING-LOGIC COMPARED TO XILINX’S
ILA FOR A NUMBER OF MODULES. {1 CLOCK, FULLEST MODE}

modules LUT Flip-Flop Block-RAM
trace ILA trace ILA trace ILA

total 537 600 1 075 200 1 728

1 997 3 038 1 573 5 238 22.5 6.5

4 3 416 5 454 4 753 12 547 45 25.5

8 6 665 9 687 8 993 22 312 75 51

16 11 471 17 380 17 474 41 828 135 102

8 (short*) 8 351 - 15 651 - 0 -

* The depth is reduced to 32 and distributed memory is used.

For the second configuration, multiple clocks were inte-
grated (Table VI) by using a system of 8 modules. The utiliza-
tion of the Live-Tracing-Logic is the same for every number
of clocks, that is because of the used clock-independent Data-
FIFO, which solves the problem of synchronization. The
utilization of the ILA increased with the number of clocks and
is up to 1.5 times higher for LUTs and 1.4 times higher for the
used Flip-Flops compared to the ILA 1-clock implementation.
This increases the utilization gap between the Live-Tracing-
Logic and the ILA further.

TABLE VI. UTILIZATION OF TRACING-LOGIC COMPARED TO
XILINX’S ILA FOR A NUMBER OF CLOCKS. {8 MODULES, FULLEST MODE}

clk LUT Flip-Flop Block-RAM
trace ILA trace ILA trace ILA

total 537 600 1 075 200 1 728

1 6 665 9 687 8 993 22 312 75 51

2 6 665 10 903 8 993 25 094 75 51

3 6 665 13 052 8 993 27 894 75 52

4 6 665 14 944 8 993 30 696 75 52

The utilization of the different modes of the Tracing-
Module is also compared (Table VII). As can be seen the
utilizations are very similar for all modes and, therefore, should
not be taken into account for design decisions.

TABLE VII. UTILIZATION OF TRACING-LOGIC FOR A DIFFERENT
MODES. {8 MODULES, 1 CLOCK}

mode LUT Flip-Flop Block-RAM

total 537 600 1 075 200 1 728

chain first 6 621 9 026 75

data first 5 732 9 018 75

round robin 6 624 9 020 75

fullest first 6 665 8 993 75

VII. CONCLUSION

This papers presents a Live-Tracing architecture for RTL
designs, which captures signals of a system continuously,
transmits them to an external interface, and converts them
to the VCD format compatible with most waveform viewers.
The architecture allows to trace designs without reducing
or stopping the clock, which makes the design feasible for
debugging off-chip interfaces or real-time applications. The
Live-Tracing-Logic contains the Tracing-Controller, which is
connected to the external interface and the Tracing-Modules,
which are connected in a chain. The modules are parame-
terizable and allow to trace signals of different bit-widths,
clocks, and numbers of triggers. The key of the Live-Tracing-
Logic is designed for debugging purposes and is integrated
automatically. Similar to ILA, the Live-Tracing-Logic captures
data after an event was detected by a trigger and is controlled
by a host system software. Also in common to the Xilinx ILA
is the parameterizable trigger logic, by in/excluding defined
triggers or setting compare values during the debugging time.
In contrast, we are not limited to windows of captured data,
which is achieved by sending only traced data if the trigger
condition is true and a value change of the signals occurs.
The Live-Tracing architecture was evaluated by a test design
connected via PCIe, with 8 modules, which generates data
continuously. The results show that a trace of an overall
bandwidth of up to 3.10 GB/s without any X-event is possible.
The utilization for LUTs and FlipFlops are 67 % respectively
70 % lower compared to the ILA of Xilinx. The memories of
the design can be configured for different use cases and for
an expected bandwidth of up to 3.10 GB/s, only very small
internal memories for the Tracing-Modules are required. The
design also better adapts to designs with different clocks, as
no more resources are required.

REFERENCES

[1] S. Asaad, J. Tierno, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur,
B. Parker, T. Roewer, P. Saha, and T. Takken, “A cycle-accurate, cycle-
reproducible multi-FPGA system for accelerating multi-core processor
simulation,” in Proceedings of the ACMSIGDA international sympo-
sium on Field Programmable Gate Arrays, ser. ACM Digital Library,
K. Compton, Ed. New York, NY: ACM, 2012, p. 153.

[2] Xilinx, “Integrated Logic Analyzer v6.2: LogiCORE IP Product
Guide,” 2016. [Online]. Available: https://www.xilinx.com/support/
documentation/ip documentation/ila/v6 2/pg172-ila.pdf

[3] ——, “Vivado Design Suite User Guide: Pro-
gramming and Debugging,” 2017. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/sw manuals/
xilinx2017 2/ug908-vivado-programming-debugging.pdf

[4] IEEE, IEC 61691-4 First edition 2004-10; IEEE 1364: IEC/IEEE Be-
havioural Languages - Part 4: Verilog Hardware Description Language
(Adoption of IEEE Std 1364-2001). [S.l.]: IEEE, 2004.

[5] Altera, “Quartus II Handbook Volume 3: Verification,” 2015.
[Online]. Available: https://www.altera.com/products/design-software/
fpga-design/quartus-prime/features.html

[6] J. Goeders and S. J. Wilton, “Signal-Tracing Techniques for In-
System FPGA Debugging of High-Level Synthesis Circuits - IEEE
Xplore Document,” 2016. [Online]. Available: http://ieeexplore.ieee.
org/document/7466842/

[7] J. P. Pinilla and S. J. E. Wilton, “Enhanced source-level instrumentation
for FPGA in-system debug of High-Level Synthesis designs,” in Pro-
ceedings of the 2016 International Conference on Field-Programmable
Technology (FPT). [Piscataway, New Jersey]: IEEE, 2016, pp. 109–
116.

[8] E. Hung and S. J. E. Wilton, “Incremental Trace-Buffer Insertion for
FPGA Debug,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 4, pp. 850–863, 2014.

[9] F. Eslami and S. J. Wilton, “An adaptive virtual overlay for fast trigger
insertion for FPGA debug,” in 2015 International Conference on Field-
Programmable Technology (FPT). [Piscataway, NJ] and [Piscataway,
NJ]: IEEE, 2015, pp. 32–39.

[10] M. Jassi, B. Bordes, D. Muller-Gritschneder, and U. Schlichtmann,
“Automation of FPGA performance monitoring and debugging Using
IP-XACT and graph-grammars,” in 2015 International Conference on
Synthesis, Modeling, Analysis and Simulation Methods and Applications
to Circuit Design (SMACD). Piscataway, NJ: IEEE, 2015, pp. 1–4.

[11] A. Kourfali and D. Stroobandt, “Efficient Hardware Debugging Using
Parameterized FPGA Reconfiguration,” in 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW
2016). Piscataway, NJ: IEEE, 2016, pp. 277–282.

[12] Z. Panjkov, A. Wasserbauer, T. Ostermann, and R. Hagelauer, “Au-
tomatic debug circuit for FPGA rapid prototyping,” in SISY 2015.
[Piscataway, New Jersey]: IEEE, 2015, pp. 155–160.

[13] H. ul Hasan Khan and D. Göhringer, “FPGA debugging by a device
start and stop approach,” in 2016 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig). IEEE, 2016, pp. 1–6.

[14] Z. Panjkov, A. Wasserbauer, T. Ostermann, and R. Hagelauer, “Hybrid
FPGA debug approach,” in 2015 25th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2015, pp. 1–8.

[15] E. Billauer, “Xillybus,” Haifa, 2017. [Online]. Available: http:
//xillybus.com/

https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug908-vivado-programming-debugging.pdf
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features.html
http://ieeexplore.ieee.org/document/7466842/
http://ieeexplore.ieee.org/document/7466842/
http://xillybus.com/
http://xillybus.com/

	Introduction
	Related Work
	System Overview
	Tracing-Module
	Tracing-Controller
	Host-Software
	Chain Protocol

	Tool Flow
	Evaluation
	Utilization
	Conclusion
	References

