
EasyChair Preprint

№ 478

RdfRules Preview: Towards an Analytics Engine

for Rule Mining in RDF Knowledge Graphs

Václav Zeman, Tomáš Kliegr and Vojtěch Svátek

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 31, 2018



RdfRules Preview: Towards an Analytics Engine
for Rule Mining in RDF Knowledge Graphs

Václav Zeman, Tomáš Kliegr, and Vojtěch Svátek

Department of Information and Knowledge Engineering,
Faculty of Informatics and Statistics, University of Economics Prague,

Czech Republic
{vaclav.zeman,tomas.kliegr,svatek}@vse.cz

Abstract. RdfRules is a framework for mining logical rules from RDF-
style knowledge graphs. The system provides software support for the
complete data mining workflows over RDF data: data ingestion, aggre-
gation, transformations, actual rule mining and post-processing of dis-
covered rules, including clustering. As a rule mining algorithm, RdfRules
adopts AMIE+ (Galárraga et al, 2015), which has been extended with
number of practical features, such as mining across multiple graphs, top-
k approach and the ability to define fine-grained patterns to reduce the
size of the search space. RdfRules is a work-in-progress.

Keywords: Rule Mining · RDF data analysis · Semantic Web tool ·
Knowledge Bases

1 Introduction

Finding interesting interpretable patterns in data is a frequently performed task
in modern data science workflow. Software for finding association rules, a specific
form of patterns, is present in nearly all data mining software bundles. These
implementations are based on the apriori algorithm or its successors, which are
severely constrained with respect to the shape of analyzed data – only single
tables or transactional data are accepted. Algorithms for logical rule mining
developed within the scope of Inductive Logical Programming (ILP) do not
have these restrictions, but they typically require negative examples and do not
scale to larger knowledge bases [5].

Large knowledge bases consisting of linked and machine-readable data are
currently typically published using the RDF1 data representation [11]. RDF-style
knowledge bases are sets of RDF statements which form labeled and oriented
multi-graphs, and as such they do not contain negative examples. Each statement
is written as a triple with subject-predicate-object or as a quad with additional
information about a named graph attached to a given triple.

The current state-of-the-art approach for rule mining from RDF knowledge
graphs is the AMIE+ algorithm [5]. Similarly to ILP systems, AMIE+ mines

1 Resource Description Framework



2 Václav Zeman et al.

(a) CRISP-DM processes (b) RdfRules processes

Fig. 1: The relationship between CRISP-DM and RdfRules processes.

Horn rules which have the form of implication and consist of one atomic formula
(or simply atom) on the right side and conjunction of atoms on the left side.

hasChild(a, c) ∧ hasChild(b, c) ⇒ isMarriedTo(a, b)

The atom has just one specified predicate and two variables at the subject and
object positions. One of these variables can also be replaced by some specific
constant, e.g., hasChild(a,Carl).

In this paper we describe the RdfRules framework, which uses AMIE+ as
a basis for a complete solution for linked data mining. RdfRules adds pre-
processing and post-processing capabilities, such as discretization of numerical
attributes and clustering of the output rules. Furthermore, RdfRules provides
several extensions over AMIE+, such as mining across multiple graphs, rule
patterns, constraints, additional measures, top-k approach etc. The framework
offers several ways to control mining processes either through a Scala and Java
API, or through a REST web service with a graphical user interface.

This paper is organized as follows. Section 2 provides an overview of the
architecture. Section 3 gives details on the implementation. A use case demon-
strating a practical application of the system is presented in Section 4. Similar
frameworks and other approaches are mentioned in Section 5. The conclusions
summarizes the contribution and provides an outlook for future work.

2 Design and Architecture

An overview of data mining processes as implemented in RdfRules is shown in
Fig. 1b.



RdfRules Preview 3

Fig. 2: Main data abstractions and processes in the RdfRules framework

2.1 Design paradigm

The construction and the sequence of individual processes have been inspired by
the CRISP-DM methodology [10], which is depicted in Fig. 1a. The way the key
CRISP-DM steps are supported in RdfRules is outlined below.

Data understanding and preparation. As the first step, RdfRules loads the
input RDF knowledge graph. The framework offers several functionalities for
data aggregation and analysis, such as computation of statistics on triples and
their types. Informed by the performed analysis, in this stage, the user can also
define transformations that are carried on the input RDF data.

Data modeling. In the modeling phase, the user restricts the search space
for AMIE+, by defining pruning thresholds, rule patterns and possibly other
constraints. Subsequently, the rule mining process is started and a complete set
of found rules is obtained.

Evaluation. A critical phase in rule mining is sifting through the discovered
rules to find the true “nuggets”, rules that are of interest to the user. To sup-
port this, RdfRules allows the user to filter, sort, select and export interesting
extracted rules based on number of features, including measures of significance
(such as support, confidence and lift). There is also the option to cluster rules
by their similarities.

2.2 Architecture

As Fig. 2 shows the architecture of the RdfRules core is composed of four main
data abstractions: RdfGraph, RdfDataset, Index and RuleSet. Instances of these



4 Václav Zeman et al.

abstractions are gradually created during processing of RDF data and rule min-
ing. Each abstraction consists of several operations which either transform the
current object or perform some action to create an output. Hence, these opera-
tions are classified as transformations or actions.

Transformations. Any transformation is a lazy operation that converts the
current data object to another. For example a transformation in the RdfDataset
object creates either a new RdfDataset or an Index object.

Actions. An action operation applies all pre-defined transformations on the
current and previous objects, and processes (transformed) input data to cre-
ate a desired output such as rules, histograms, triples, statistics etc. Compared
to transformations, actions may load data into memory and perform time-
consuming operations.

Caching. If we use several action operations, e.g. with various input param-
eters, over the same data and a set of transformations, then all the defined
transformations are performed repeatedly for each action. This is caused by lazy
behavior of main data abstractions and the streaming process lacking memory
of previous steps. These redundant and repeating calculations can be eliminated
by caching of performed transformations. Each data abstraction has the cache
method that can perform all defined transformations immediately and store the
result either into memory or on a disk.

2.3 Graphs and Datasets

The RdfGraph object is built once we load an RDF graph. It can either be a
file or a stream of triples or quads in a standard RDF format such as N-Triples,
N-Quads, JSON-LD, TriG or TriX. Besides these standard formats the RdfRules
framework has its own native binary format to save/cache all defined data objects
and transformations on a disk for later and repeated use. During the data loading
process just one RdfGraph instance is created with a default or specified name. If
the input data format supports named graphs, several instances can be created.

Any RdfGraph instance can be used as a set of triples with multiple trans-
formation operations supported on them. One can filter triples by a condition,
replace selected resources or literals and merge numeric data by discretization
algorithms. Transformed data may be exported to a file in one of the RDF
formats. For analytical purposes, the user can aggregate statements and view
statistics or meta information about the graph such as types of predicate ranges
or histograms of triple items. The complete list of all important operations is
shown in Table 1.

The RdfDataset instance is created from one or many RdfGraph instances.
It is composed of quads, where all triples have additional provenance informa-
tion attached that expresses to which graph they belong. In addition to some
extensions the RdfDataset object supports the same operations as the RdfGraph
abstraction (see Table 2).



RdfRules Preview 5

Table 1: The RdfGraph data abstraction: all important operations
Transformations

map(func)
Return a new RdfGraph object with mapped triples by a
function func.

filter(func)
Return a new RdfGraph object with filtered triples by a
function func.

take(n)
Return a new RdfGraph object with filtered triples by
cutting the triple set.

drop(n)
slice(from, until)

discretize(task, func)
Return a new RdfGraph object with discretized numeric
literals by a predefined task. It processes such triples which
satisfy a function func.

Actions

foreach(func) Apply a function func for each triple.

histogram(s, p, o)
Return a map where keys are items and values are numbers
of aggregated items. Parameters s, p, o represents booleans
determining which triple items should be aggregated.

types()
Return a list of all predicates with their type ranges and
frequencies.

cache(target)
Cache this RdfGraph object either into memory or into a
file on a disk.

export(target, format)
Export this RdfGraph object into a file in some familiar
RDF format.

Table 2: The RdfDataset data abstraction: selected operations
This data abstraction has the same operations as the RdfGraph. The only difference
is that operations do not work with triples but with quads.

Additional transformations

addGraph(graph) Return a new RdfDataset with added graph.

index(mode) Create an Index object from this RdfDataset object.

2.4 Indexing

Before mining the input dataset has to be indexed into memory for the fast rules
enumeration and measures counting. The AMIE+ algorithm uses six fact indexes
that hold data in several hash tables. Hence, it is important to realize that the
complete input data are replicated six times and then stored into memory before
the mining phase. This index may have two modes: preserved and in-use. The
preserved mode keeps data in memory until the existence of the index object,
whereas the in-use mode loads data into memory only if the index is needed and
is released after use.

The Index instance can be created from the RdfDataset object or loaded
from cache. It contains prepared data and has operations for rule mining with
the AMIE+ algorithm (see Table 3).



6 Václav Zeman et al.

Table 3: The Index data abstraction: all important operations
Transformations

toDataset() Return RdfDataset object from this Index object.

Actions

cache(target) Serialize this Index object into a file on a disk.

mine(task)
Execute a rule mining task with thresholds, constraints and
patterns, and return a RuleSet object.

Table 4: Overview of mining thresholds supported by RdfRules

MinHeadSize
Minimum number of triples matching rule head. It must be
greater than zero.

MinHeadCoverage
Minimal head coverage. It must be greater than zero and
less than or equal to one.

MaxRuleLength Maximal length of a rule. It must be greater than one.

TopK
Maximum number of returned rules sorted by head cover-
age. It must be greater than zero.

Timeout Maximum mining time in minutes.

2.5 Rule Mining - State Space Restrictions

The AMIE+ algorithm outputs all rules matching the specified minimum values
of selected measures of significance. This can output many more rules than
desirable for the user, who may be, for example, interested only in rules that
contain a specific attribute, or may want to prefer to see only the first 100
rules, rather than wait for the state space to be exhaustively searched. RdfRules
addresses these user requirements by extending AMIE+ with the possibility to
define new types of restrictions: new thresholds, rule patterns and constraints.
These are described in greater detail in the following.

Thresholds. Besides standard thresholds defined in AMIE+, such as support
and head coverage, RdfRules also offers the top-k approach and a timeout thresh-
old which determines a maximum mining time. All mining thresholds are listed
in Table 4.

Rule Patterns. RdfRules allows the user to specify several rule patterns using
a pre-defined grammar. All rules must match at least one pattern from the rule
pattern list. Matching is performed during the mining phase and therefore the
rules enumeration can be greatly sped up thanks to stricter pruning of the state
space.

AnyConst(AnyV ar,AnyV ar) ⇒ livesIn(AnyV ar,AnyV ar) (a rule pattern)

wasBornIn(a, b) ⇒ livesIn(a, b) (a matching rule)



RdfRules Preview 7

Table 5: RuleSet data abstraction: overview of essential operations
Transformations

map(func)
Return a new RuleSet object with mapped rules by a func-
tion func.

filter(func)
Return a new RuleSet object with filtered rules by a func-
tion func.

take(n), drop(n),
slice(from, until)

Return a new RuleSet object with filtered rules by cutting
the rule set.

filterByPatterns
(patterns)

Return a new RuleSet object with rules matching at least
one of the input rule patterns.

sortBy(measures)
Return a new RuleSet object with sorted rules by selected
measures of significance.

computeConfidence
(minConf )

Return a new RuleSet object with the computed confidence
measure for each rule that must be higher than the minConf
value.

computePcaConfidence
(minPcaConf )

Return a new RuleSet object with the computed PCA con-
fidence measure for each rule that must be higher than the
minPcaConf value.

computeLift(minConf )
Return a new RuleSet object with the computed lift mea-
sure for each rule.

makeClusters(task)
Return a new RuleSet object with clusters computed by a
clustering task.

findSimilar(rule, n),
findDissimilar(rule, n)

Return a new RuleSet object with top n rules, the selected
rules will be the most similar (or dissimilar) ones from the
input rule.

Actions

foreach(func) Apply a function func for each rule.

cache(target)
Cache this RuleSet object either into memory or into a file
on a disk.

export(target, format)
Export this RuleSet object into a file in some selected out-
put format.

Constraints. Finally, the last mining parameter specifies additional constraints
and defines a way of mining. Here is a list of implemented constraints that can
be used:

– OnlyPredicates(x): rules must contain only predicates defined in the set x.

– WithoutPredicates(x): rules must not contain predicates defined in the set
x.

– WithInstances: enable to mine rules with constants at the subject or object
position.

– WithObjectInstances: enable to mine rules with constants only at the object
position.

– WithoutDuplicitPredicates: rules that contain one predicate more than once
will be removed.



8 Václav Zeman et al.

Fig. 3: Available interfaces in the RdfRules framework

2.6 Post-Processing of Discovered Rules

The RuleSet object is on the output of the RdfRules workflow. It contains all
discovered rules conforming to the restrictions.

Every rule in the rule set consists of the head (consequent - the right side
of the rule), body (antecedent - the left side of the rule) and measures2 of sig-
nificance. Basic measures are: rule length, support, head size and head coverage.
Other measures may be calculated individually and explicitly within the RuleSet
abstraction. Additional measures of significance include: body size, confidence,
PCA body size, PCA confidence, head confidence, lift and cluster. Rules can be
filtered and sorted by all these measures.

This final abstraction has multiple operations for rule analysis, counting ad-
ditional measures of significance, rule filtering and sorting, rule clustering, and
finally rule exporting for use in other systems (see Table 5). All the discovered
rules are stored in memory but as in the case of previous data objects all trans-
formations defined in the RuleSet are lazy. Therefore, this abstraction also allows
to cache rules and transformations on a disk or in memory for a repeating usage.
The complete rule set (or its subsets) can be exported and saved into a file in a
human readable text format or in a machine readable JSON format.

3 Implementation

The core of RdfRules is written in the Scala language. Besides the Scala API,
RdfRules also provides a Java API, REST web service and graphical user in-
terface (GUI) via a web browser (see Fig. 3). The Scala or Java API can be
used as a framework to extend another data mining system or application. The

2 All measures of significance are described in the AMIE+ paper and on the RdfRules
GitHub page: https://github.com/propi/rdfrules



RdfRules Preview 9

web service is suitable for modular web-based applications and remote access.
Finally, the GUI is based on the web service interface and can be used either as
a standalone desktop application or as a web interface to control an RdfRules
instance that is deployed on a remote server.

For RDF data processing RdfRules uses some modules from Apache Jena3

framework. In the pre-processing phase, it is possible to use several discretiza-
tion methods for automatic merging of numerical literals. These tasks represent
facades for unsupervised discretization algorithms, such as equal-frequency and
equal-width [3], implemented in the EasyMiner-Discretization4 library, which is
part of the EasyMiner system [9]. For post-processing the RdfRules uses cluster
analysis to categorize the output rules by the DBScan algorithm [4].

The source code of RdfRules is published under the GPLv3 open-source
license5 and is hosted at GitHub6. Detailed manuals for using and deploying
individual modules are described on the GitHub page.

4 Examples

Subsets of YAGO [8] and DBpedia [1] are used as example input datasets. These
knowledge graphs are interconnected by the owl:sameAs predicate.

First, consider only the YAGO sample as the input knowledge graph. We can
start the rule mining process simply by invoking several operations in the Scala
API:

Scala API: rule mining with default parameters

1 Dataset("yago.tsv")
2 .mine(Amie()) //defaults: MinHeadSize=100, MinHeadCoverage=0.01, MaxRuleLength=3
3 .sorted //sorted by HeadCoverage
4 .take(3) //take first 3 rules
5

6 //Output samples:
7 isMarriedTo(b, a) => isMarriedTo(a, b) | supp: 746, hc: 0.45, hs: 1667
8 participatedIn(b, c) ^ participatedIn(a, c) => dealsWith(a, b) | supp: 203, hc: 0.4, hs: 520
9 directed(a, b) => actedIn(a, b) | support: 60, headCoverage: 0.012, headSize: 4919

Notice that RdfRules automatically recognized the RDF format by the file exten-
sion. In this example the program first mines all rules conforming to all default
restrictions. After that, it sorts rules by the head coverage and takes top three
rules from the whole list.

The third output rule directed(a, b) ⇒ actedIn(a, b) can be interpreted as
follows: if someone directs something, e.g., a movie, then he or she is also acted
in the movie. For this rule there are 4919 triples matching the head actedIn(a, b),
it is called head size. Only 60 triples of 4919 are connected to such triples that
are matching the body directed(a, b). In other words, there are only 60 cases of
4919 where an actor of a movie is also the director of the movie. This measure

3 https://jena.apache.org/
4 https://github.com/KIZI/EasyMiner-Discretization
5 https://www.gnu.org/licenses/gpl.txt
6 https://github.com/propi/rdfrules



10 Václav Zeman et al.

is called support. A ratio between support and head size is called head coverage.
For this example the head coverage is 60

4919 = 0.012.

This calculation may be sped-up by using the top-k approach, which returns
the same results, but can be faster owing to gradual increase of the support
threshold during mining.

Scala API: rule mining with top-k approach

1 Dataset("yago.tsv")
2 .mine(Amie().addThreshold(Threshold.TopK(3)))
3 .sorted

We can also compute additional measures of significance, such as confidence,
PCA confidence (they indicate the quality of the rule) and lift (it indicates de-
pendence between the body and the head). Similar output rules can be clustered
by their similarity functions and the DBscan algorithm:

Scala API: rule mining with other measures

1 Dataset("yago.tsv")
2 .mine(Amie()
3 .addThreshold(Threshold.MinHeadSize(80))
4 .addThreshold(Threshold.MinHeadCoverage(0.001))
5 .addThreshold(Threshold.TopK(1000))
6 .addConstraint(RuleConstraint.WithInstances(true))) //enable to mine rules with constants
7 .computePcaConfidence(0.5)
8 .computeLift()
9 .makeClusters(DbScan())

10 .sortBy(Measure.Cluster, Measure.PcaConfidence, Measure.Lift, Measure.HeadCoverage)
11 .cache("rules-example3.cache") //save mined rules on disk
12

13 //Output sample:
14 participatedIn(a, <1999_NATO_bombing_of_Yugoslavia>) ^
15 participatedIn(b, <Attack_on_Aruba>) => dealsWith(a, b)
16 supp: 18, hc: 0.035, conf: 0.5, pcaConf: 0.56, lift: 78, cluster: 5

In the next example, we attach the DBpedia knowledge graph and trace such
rules whose atoms belong to both graphs. This can be achieved by adding a rule
pattern, which restricts the output rule set.

Scala API: rule mining across two graphs

1 (Dataset() + Graph("yago", "yago.tsv") + Graph("dbpedia", "dbpedia.ttl"))
2 .mine(Amie()
3 .addPattern(AtomPattern(graph = Uri("dbpedia")) =>: AtomPattern(graph = Uri("yago")))
4 .addPattern(AtomPattern(graph = Uri("yago")) =>: AtomPattern(graph = Uri("dbpedia"))))
5 .graphBasedRules //attach a graph to all atoms of all rules
6

7 //Output samples:
8 hasChild(a, c, <yago>) ^ parent(c, b, <dbpedia>) => isMarriedTo(a, b, <yago>)
9 hasChild(c, a, <yago>) ^ hasChild(c, b, <yago>) => relative(a, b, <dbpedia>)

10 hasNeighbor(a, c, <yago>) ^ spokenIn(b, c, <dbpedia>) => hasOfficialLanguage(a, b, <yago>)

All previous operations can also be performed using the Java API, web ser-
vice and GUI. The following example shows a complex mining workflow in all
available interfaces including pre-processing, rule mining, rules post-processing
and exporting results to a file. Figure 4 shows a preview of defining individual
processes in the GUI.



RdfRules Preview 11

Fig. 4: An example of a mining workflow in the RdfRules GUI.

Scala API: a rule mining workflow

1 Dataset("yago.tsv")
2 //we can filter triples by a condition.
3 .filter(!_.triple.predicate.hasSameUriAs("participatedIn"))
4 //we discretize all literals for "hasNumberOfPeople" predicate
5 //into three equal-frequent bins.
6 .discretize(DiscretizationTask.Equifrequency(3))
7 (_.triple.predicate.hasSameUriAs("hasNumberOfPeople"))
8 .mine(Amie()
9 //enable to mine rules with constants.

10 .addConstraint(RuleConstraint.WithInstances(true))
11 //we define rules patterns - all rules must contain the "hasNumberOfPeople" predicate
12 //at the head or body position.
13 .addPattern(AtomPattern(predicate = Uri("hasNumberOfPeople")) =>: None)
14 .addPattern(AtomPattern(predicate = Uri("hasNumberOfPeople"))))
15 //rules post-processing: confidence counting and sorting.
16 .computePcaConfidence(0.5)
17 .sorted
18 //we export mined rules into a file in a machine readable json format.
19 .export("rules.json")

Java API: a rule mining workflow

1 Dataset
2 .fromFile("yago.tsv")
3 .filter(quad -> !quad.getTriple().getPredicate().hasSameUriAs("participatedIn"))
4 .discretize(new DiscretizationTask.Equifrequency(3),
5 quad -> quad.getTriple().getPredicate().hasSameUriAs("hasNumberOfPeople"))
6 .mine(RulesMining.amie()
7 .withInstances(true)
8 .addPattern(RulePattern.create().prependBodyAtom(
9 new AtomPattern().withPredicate(new Uri("hasNumberOfPeople"))))

10 .addPattern(RulePattern.create(
11 new AtomPattern().withPredicate(new Uri("hasNumberOfPeople")))))
12 .computePcaConfidence(0.5)
13 .sorted()
14 .export("rules.json")



12 Václav Zeman et al.

Web Service: JSON task definition

1 [
2 { "name": "LoadDataset", "parameters": { "path": "yago.tsv" } },
3 { "name": "FilterQuads", "parameters": {
4 "or": [{ "predicate": "<participatedIn>", "inverse": true }]
5 }},
6 { "name": "Discretize", "parameters": {
7 "task": { "name": "EquifrequencyDiscretizationTask", "bins": 3 },
8 "predicate": "<hasNumberOfPeople>"
9 }},

10 { "name": "Mine", "parameters": {
11 "constraints": ["WithInstancesOnlyObjects"],
12 "patterns": [{
13 "head": { "predicate": { "name": "Constant", "value": "<hasNumberOfPeople>" } }
14 },{
15 "body": [{ "predicate": { "name": "Constant", "value": "<hasNumberOfPeople>" } }]
16 }]
17 }},
18 { "name": "ComputePcaConfidence", "parameters": { "min": 0.5 } },
19 { "name": "Sorted", "parameters": null },
20 { "name": "ExportRules", "parameters": { "path": "rules.json" } }
21 ]

Additional examples demonstrating the three available interfaces for Rdf-
Rules: Scala API, Java API, and the web service can be found in the RdfRules
GitHub repository.7

5 Related Work

The RdfRules framework is partially built on the EasyMiner.eu data mining
system [9]. That is a complex web application for association rule mining, outlier
detection and rule-based classification. It offers a graphical user interface and a
public REST API. The system is also able to mine rules from RDF-style datasets
in two modes. The first one only transforms input RDF dataset into transactions
of items and uses the common apriori-based algorithm for rules enumeration. The
second solution uses AMIE+ approach only with basic measures without further
extensions. This module does not provide any options for data pre-processing
and post-processing.

Another system for RDF data processing is called SANSA-Stack [6]. This
project offers a set of algorithms for distributed data processing of large-scale
RDF knowledge bases. The implementation is adapted for Apache Spark envi-
ronment. Beside classification and clustering algorithms it also contains methods
for logical rules mining by the AMIE+ algorithm. SANSA-Stack is composed of
several libraries and is considered as a framework appropriate for further use
in others data mining systems. Hence, it does not contain any GUI or public
endpoint.

Beside the state-of-the-art AMIE+ approach there are other algorithms and
prototypes which come with new measures or methods. First, the SWARM al-
gorithm, proposed by Barati et al. in [2], mines so-called semantic association
rules. It uses the rdf:type predicate and the rdfs:subClassOf property to find

7 https://github.com/propi/rdfrules/tree/master/experiments



RdfRules Preview 13

rules with context to classes defined in an RDF schema or an ontology. Second,
Tanon et al. in [7] introduced new scoring functions for better quality measure-
ment of rules extracted from the RDF knowledge graphs with respect to the
Open World Assumption. All these approaches can extend the current state of
the RdfRules framework. Hence, the engine is adapted and open to add new
measures or mining approaches in the future.

6 Conclusion and Future Work

RdfRules is a software system providing an end-to-end solution for rule mining
over RDF knowledge graphs, implementing the state-of-the-art AMIE+ [5] al-
gorithm. RdfRules covers the complete data mining lifecycle, most importantly
providing functionality for data pre-processing, which are not supported by the
first (and to our knowledge the only other) AMIE+ implementation made avail-
able by the AMIE+ authors.8 What is unique to RdfRules is also a set of al-
gorithmic extensions to AMIE+ that allow for faster mining and more concise
results. The framework offers several interfaces to control a mining workflow and
is suitable both for developers and for data analysts.

As to the work-in-progress and future work, we currently work on bench-
marking RdfRules to evaluate the impact of the the new type of state space
restrictions introduced in RdfRules on processing time. A promising direction
for extending RdfRules is adding support for RDF schemas and ontologies, which
would involve resource types with hierarchies into the mining process. Although
the system currently supports multi-threading on a single machine, we would
also like to add support for distributed mining and memory scaling on multiple
nodes. Finally, AMIE+ produces logical rules with possibly complex structure,
which may be found difficult to understand by some users. From the user perspec-
tive, research into human-perceived interpretability of logical rules is urgently
needed.

7 Acknowledgements

This research was partly supported by grant IGA 33/2018 and institutional sup-
port for research activities of the Faculty of Informatics and Statistics, University
of Economics, Prague.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: The Semantic Web. pp. 722–735. Springer,
Berlin, Heidelberg (2007)

8 https://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/amie/



14 Václav Zeman et al.

2. Barati, M., Bai, Q., Liu, Q.: Mining Semantic Association Rules from RDF Data.
Knowledge-Based Systems 133, 183–196 (2017)

3. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and Unsupervised Discretiza-
tion of Continuous Features. In: Prieditis, A., Russell, S. (eds.) Machine Learning
Proceedings 1995, pp. 194–202. Morgan Kaufmann, San Francisco (CA) (1995)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining. pp.
226–231. KDD’96, AAAI Press (1996)

5. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast Rule Mining in Onto-
logical Knowledge Bases with AMIE+. The VLDB Journal 24(6), 707–730 (2015)

6. Lehmann, J., Sejdiu, G., Bühmann, L., Westphal, P., Stadler, C., Ermilov, I., Bin,
S., Chakraborty, N., Saleem, M., Ngomo, A.C.N., et al.: Distributed Semantic
Analytics Using the SANSA Stack. In: International Semantic Web Conference.
pp. 147–155. Springer (2017)

7. Pellissier Tanon, T., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.:
Completeness-Aware Rule Learning from Knowledge Graphs. In: International Se-
mantic Web Conference. pp. 507–525. Springer (10 2017)

8. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.
In: Proceedings of the 16th International Conference on World Wide Web. pp.
697–706. WWW ’07, ACM, New York, NY, USA (2007)

9. Voj́ı̌r, S., Zeman, V., Kuchař, J., Kliegr, T.: EasyMiner.eu: Web Framework for In-
terpretable Machine Learning Based on Rules and Frequent Itemsets. Knowledge-
Based Systems 150, 111–115 (2018)

10. Wirth, R., Hipp, J.: CRISP-DM: Towards a Standard Process Model for Data
Mining. In: Proceedings of the 4th International Conference on the Practical Ap-
plications of Knowledge Discovery and Data Mining. pp. 29–39. Citeseer (2000)

11. World Wide Web Consortium and others: RDF 1.1 Concepts and Abstract Syntax
(2014)


