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 

Abstract - Automated evaluation of image quality is essential to 

assure accurate diagnosis and effective patient management. 

This is particularly important for multi-center studies, typically 

employed in clinical trials, in which the data are acquired on 

different machines with different protocols. Visual quality 

assessment of magnetic resonance imaging (MRI) data is 

subjective and impractical for large datasets. Data-intensive 

deep learning methods such as convolutional neural networks 

(CNNs) are promising tools for processing large-scale imaging 

datasets for automated quality assessment. In this study, we 

evaluate a CNN-based method for quality assessment of the 

Autism Brain Imaging Data Exchange (ABIDE) structural brain 

MRI dataset acquired from 17 sites on more than a thousand 

subjects. The CNN architecture consisted of an input layer, four 

convolution layers, two fully connected layers, and an output 

layer. A balanced set of 348 image volumes was used in the study. 

60% of the data was used for training, 15% for validation, and 

25% for testing. The results of the automated approach were 

compared with the evaluation by the radiologist. Performance of 

the CNN was assessed using the confusion matrix. The 

concordance in image quality labels between the expert and 

CNN was 86% (sensitivity = 81%, specificity = 92%). The 

present study shows that the proposed model can evaluate the 

image quality of brain MRI with higher classification accuracy 

compared to previous state-of-the-art classical machine learning 

algorithms. 

 

I. INTRODUCTION 

 
Magnetic resonance imaging (MRI) is the most common 

imaging modality for evaluating neurological disorders. 
Unfortunately, MRI is prone to image artifacts arising from 
both intrinsic and extrinsic factors. Evaluation of the image 
quality is critical for accurate diagnosis. Visual inspection of 
the images is the most common way for image quality 
evaluation. However, this is not a viable option for evaluating 
large amounts of data that are typically collected in multicenter 
studies. There is thus a critical need for tools for automated 
evaluation of MRI images. 

Recent studies have applied machine learning for 
automating image quality evaluation in large-scale and multi-
center studies [1], [2]. In these studies supervised learning 
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methods such as support vector machines (SVMs), random 
forests, and Gaussian naïve Bayes  classifiers were applied [1], 
[2]. These supervised learning methods use hand-crafted 
metrics which probe different aspects of the image quality 
such as noise, ghosting, and nonuniformity. These metrics are 
used as features to train a classifier. For example, MRIQC 
extracts a vector of 64 image quality metrics per input image 
[1] and the UK Biobank computes 190 features to assess T1-
weighted (structural) images [2]. Pizarro et al., [3] used three 
volumetric features and three artifact-specific features to train 
a SVM classifier. The possible challenge in these methods is 
the development of good quality metrics to drive the 
automated classification since the accuracy of classification 
depends on the features used [2], [3].  

Recently, deep learning (DL) algorithms have rapidly 
become popular for analyzing medical images without a need 
for manually selecting the features [4]. Convolutional neural 
networks (CNNs) are one of the most popular algorithms for 
image analysis due to their self-learning ability [5], [6]. They 
achieve generalizability by training on large amounts of data 
[7]. These algorithms have been successfully used for image 
classification, localization, object detection, segmentation, 
registration, and other related tasks [8].  

Recent studies have demonstrated the feasibility of 
automated assessment of medical image quality using CNNs 
[9][10]. Kustner et al., [9] proposed extracting patches from 
T1-weighted MR images of 16 healthy volunteers from a 
single site to train the CNN. Esses et al., [10] used 522 T2 – 
weighted Liver MRI images acquired from a single site. It is 
unclear that these single site results can be generalized to data 
acquired at different centers. The above considerations 
highlight the need for a model that can be generalizable to data 
that are typically acquired in multi-center clinical trials.  

In this work, we propose a data-driven image quality 

analysis using CNN that is capable of self-learning image 

quality features from the input data, and can provide better 

generalization to multi-site data. Brain MRIs from the open-

access Autism Brain Imaging Data Exchange (ABIDE) are 

used to train and evaluate the performance of the proposed 

technique. In section II of this paper, we describe the datasets, 

 

Automated Image Quality Evaluation of Structural Brain Magnetic 

Resonance Images using Deep Convolutional Neural Networks 

Sheeba J. Sujit 1, Refaat E. Gabr 1, Ivan Coronado 1, Melvin Robinson 2, Sushmita Datta 1, Ponnada A. 

Narayana 1 

1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science 

Center at Houston (UTHealth) 
2 Department of Electrical Engineering, The University of Texas at Tyler 

 



  

the network architecture and evaluation metrics in detail. The 

results are presented in section III and discussed in section IV. 

 

II. METHODS 

A. Image Database 

The present study was carried out on structural brain 
images from the ABIDE database. ABIDE is a consortium that 
provides previously collected images for the purpose of data 
sharing within the scientific community [11]. The ABIDE 
dataset is publicly available [12] and contains images acquired 
at 17 sites with diverse acquisition settings and parameters. 
Many forms of image degradation in the ABIDE database are 
participant-specific or arise from practical settings (examples 
shown in Fig. 1). This heterogeneity makes it a valuable 
resource to train machine learning models that can be 
generalized to MRI data from other sites. The dataset includes 
structural brain MRI images, resting state functional MRI data, 
and phenotypic information for each patient. The phenotypic 
information includes manual image quality assessment by 
multiple experts [13]. In this study our focus is on structural 
MRI. We considered evaluation by one expert based on the 
general image quality as the ground truth.  

B. Data preprocessing 

The dataset contains a diverse set of images with different 
matrix sizes and image resolution acquired with variable 
scanner settings and parameters.  Before using these images as 
input to the CNN, they were re-sampled to isotropic resolution 
of 1 x 1 x 1 mm3 and matrix size 256 x 256 x 256. The middle 
200 slices covering the brain were extracted. The image 
intensity was normalized between 0 and 1.  

C. Deep Learning Architecture 

 The architecture of the multilayer CNN used in this study 

is shown in Fig. 2. It consisted of an input layer, four 

convolution layers, two fully connected (dense) layers and an 

output layer. A sigmoid function in the final layer provided 

the probability for the quality class. Each convolution layer 

consisted of N filter kernels of size M X L (Fig. 2), an 

activation unit, and a maximum pooling unit. The convolution 

operation produced feature maps by convolving a kernel 

across the input image or output from the previous 

convolution layers. The rectified linear unit (ReLu) defined as 

f(x) = max(0,x) was used as the activation function. Pooling 

layers were used to down-sample the output of preceding 

convolution operation [7]. The network was trained by 

minimizing the binary cross-entropy loss function with a 

learning rate of 10-4. Optimization used the Adam method, 

performing stochastic optimization with adaptive gradient 

moment estimation [14], with associated parameters of β1 = 

0.9, β2 = 0.999 and ϵ = 10-8. The analysis was performed on a 

balanced set of 348 images. Training used 2D slices as the 

input to the CNN. In total, our dataset contained 69,600 2D 

images out of which 34,800 were labeled ‘exclude’ and 

34,800 were labelled ‘include’. These were split into 41,760 

slices (60%) for training, 10,440 slices (15%) for validation, 

and 17,400 slices (25%) for testing. Dropout was used to 

regularize the network weight updates to avoid overfitting. 

The maximum number of epochs was 300. A grid search was 

performed to optimize the learning rate and drop-out factors 

in the fully connected layers. All processing was done on the 

 
Figure 1. Example MRI scans from the ABIDE dataset with prominent 

artifacts: (a,b) severe motion artifacts due to head motion (c,d) severe coil 

artifacts. 
 

 

 

  
Figure 2. Architecture of the proposed CNN for evaluating image quality.  Conv: convolution, FC: fully-connected, ReLU: rectified linear unit, Pool: 

maximum pooling. 



  

Maverick 2 cluster at the Texas Advanced Computing Center 

(TACC) at Austin, Texas. NVIDIA Tesla GTX graphics 

processing unit (GPU) cards were used, and implementation 

was carried out in Python using the Keras library [15] and 

TensorFlow [16]. 

  

D. Classification Metrics 

The performance of the CNN was evaluated using the 

confusion matrix which summarizes the predicted vs. 

expected results [17]. The sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), 

accuracy (ACC), and the F1-score (the harmonic mean of the 

PPV and sensitivity) were calculated as follow: 

 Sensitivity   = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (1) 

 

 Specificity = 
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
 (2) 

 

 PPV = 
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (3) 

 

 NPV = 
𝑇𝑁

(𝑇𝑁+𝐹𝑁)
 (4) 

 

 Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5) 

 

 F1- score = 
2.𝑇𝑃

2.𝑇𝑃+𝐹𝑃+𝐹𝑁
 (6) 

 

where TP = True Positive (both rater and CNN labels the 

image as “exclude”), TN = True Negative (both rater and CNN 

labels the image as “include”), FP = False Positive (rater labels 

the image as “include” but CNN labels as “exclude”) and FN 

= False Negative (rater labels the image as “exclude” but CNN 

labels as “include”). 

     

III. RESULTS 

Table I shows the concordance between rater and CNN 
algorithm in identifying the image quality of the 2D slices 
from T1-weighted brain MR volume.  The rater scored 42% 
(7306/17400) of cases as ‘include’ and 58% (10,094/17400) as 
‘exclude’. CNN scored 50% (8648/17400) as ‘include’ and 
50% (8752/17400) as ‘exclude’. There was agreement 
between the rater and CNN in 86% of the cases. The 
sensitivity, specificity, PPV and NPV of the CNN were 81%, 
92%, 93% and 78% respectively. The F1-score of ‘exclude’ 
was 87% and ‘include’ was 84%. High F1-score for both 
classes shows good classification performance.  

 

IV. DISCUSSION 

In this work, we evaluated a DL model for reference-less 
image quality assessment of structural brain MRI data. By 
integrating multiple convolution layers, the CNN learned to 
produce feature maps with relevant information about image 
quality. The fully-connected layers combine these features to 
classify the input image. The classification performance of the 
proposed model cannot be easily compared to other methods 

when the datasets used for training and testing are different. 
However, we compared our results to the maximum 
classification accuracy achieved by other state-of-the-art 
methods listed in literature. The supervised classification 
framework proposed by Esteben et al., [1] used random forests 
classifiers on the ABIDE databased on 64 features extracted 
from each input image.  While the accuracy was satisfactory 
on a held-out dataset (F1-score = 72%), the sensitivity (28%) 
was low. FidelAlfaro-Almagro et al., [2] extracted 190 
features, and combined the output of three classifiers: Bayes 
network classifier, naïve Bayes classifier and MetaCost 
classifier. They achieved an accuracy of 84%. Pizarro et al., 
[3] defined 3 volumetric features and 3 artifact-specific 
features to train a SVM classifier, achieving an accuracy of 
80%. Using CNNs, Kustner et al. [9] and Esses et al., [10] 
achieved accuracy of 97% and 79%, respectively, but data 
were limited to single site. The proposed CNN model achieved 
an accuracy of 86% on a multi-center image database, with 
images acquired from different scanners and with different 
scan parameters.  

One advantage of deep learning methods is that, once a 
model is trained, classification of new image is very efficient, 
and typically takes less than one second. This feature makes it 
suitable for real-time decisions about image quality to 
determine if there is a need for re-acquisition before the patient 
leaves the MRI scanner. 

Our model achieved high accuracy in predicating overall 
image quality. However, the model does not provide 
information on the type of the artifact (motion, flow, wrap-
around, etc.), nor does it provide any spatial localization of the 
artifact. These are active areas of research, and other models 
are being developed to address these challenges. 

Further development to improve the performance of the 
CNN will investigate deeper networks and pre-trained models. 
Building models to detect and classify various classes of image 
degradation and different modalities (e.g. T2-weighted, 
FLAIR, etc.) will also be pursued.  
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