
EasyChair Preprint
№ 2742

Making AdaBoost Less Prone to Overfitting On
Noisy Datasets

Zainab Ghadiri Modarres, Mahmood Shabankhah and Ali Kamandi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 21, 2020

Making AdaBoost Less Prone to Overfitting On
Noisy Datasets

Zainab Ghadiri Modarres
School of Engineering Science,

College of Engineering,
University of Tehran

Tehran, Iran
zainab.ghadiri@ut.ac.ir

Mahmood Shabankhah
School of Engineering Science,

College of Engineering,
University of Tehran

Tehran, Iran
shabankhah@ut.ac.ir

Ali Kamandi
School of Engineering Science,

College of Engineering,
University of Tehran

Tehran, Iran
kamandi@ut.ac.ir

Abstract— AdaBoost is perhaps one of the most well-known
ensemble learning algorithms. In simple terms, the idea in
AdaBoost is to train a number of weak learners in an increamental
fashion where each new learner tries to focus more on those
samples that were misclassfied by the preceding classifiers.
Consequently, in the presence of noisy data samples, the new
leraners will somehow memorize the data, which in turn will lead
to an overfitted model. The main objective of this paper is to
provide a generalized version of the Adaboost algorithm that
avoids overfitting, and performs better when the data samples are
corrupted with noise. To this end, we make use of another
ensemble learning algorithm called ValidBoost [15], and introduce
a mechanism to dynamically determine the thresholds for both the
error rate of each classifier and the error rate in each iteration.
These threshholds enable us to control the error rate of the
algorithm. Experimental simulations has been made on several
benchmark datasets to evaluate the performance of our proposed
algorithm.

Keywords—Ensemble learning algorithms, Boosting, Adaboost,
Overfitting, Noise, zero_one_loss.

I. INTRODUCTION

For decades, ensemble learning has attracted a lot of
attention among computer science and machine learning
researchers. In fact, ensemble learning has been developed to
reduce variance and improve the accuracy of decision-making
problems. Ideas based on ensemble learning are also used in our
life. When we consult others and decide on the majority's
opinion, we actually use the ensemble learning method [1].

For example, in 1785, the French mathematician and
philosopher Nicolas de Caritat presented the famous Condorcet's
jury. This is a jury opinion that requires a decision with a binary
result. This has two main constraints: 1. Voters are independent;
2. there are only two possible outcomes. He states that the
combination of information from different sources in decision
making is much better than decision-making based on a single
source of information [2].

Ensemble learning methods are considered as an advanced
solution for many of the machine learning problems. These
methods increase the efficiency of the model by training several
models and combining their results [2].

In the following we will read:

Section2: Definition of Ensemble Learning, Section3:
Related worked, Section4: provides a generalized Adaboost
algorithm, Section5: Experimental results, at the end:
Conclusions.

II. ENSEMBLE LEARNING

In 2017, Omer Sagi and Lior Rokach introduced the concepts
and methods of traditional and modern ensemble learning and
discussed new challenges in this field, saying that the main
hypothesis of ensemble learning is that by combining Several
models, the error of one classifier is likely to be covered by
another, and as a result, the overall ensemble learning
performance is better than one classifier [2].

The classification error rate consists of two controllable
components: the bias is the precision of classifier, and the
variance is the accuracy of model with different training data.
These two components have a trade-off relationship with each
other, and the classifier with low bias class tends to have higher
variance and vice versa. The purpose of the ensemble learning
systems is to create several classifiers with similar bias, which
after the combination of their results; the variance can be
reduced [1].

In ensemble learning, each classifier creates different errors
on the samples, but generally all agree on the result of the
classification correctly. As a result, the classification accuracy is
increased. Therefore, averaging the results of each classifier
reduces the error of ensemble classification. Here are two
important points. First, there are several ways to integrate the
classifier in ensemble-based systems, averaging is one of them.
Second, integrating the results of classifier do not necessarily
lead to guarantee a better performance than the best classifier in
the ensemble-based system, but it reduces the likelihood of
choosing a poorly-efficient classifier. In general, if we knew
which class would be the best, it would not be necessary to use
ensemble-based system, but because this is unclear, we need an
ensemble learning system [1].

Three strategies are needed to build an effective ensemble
leaning model:

1. Data Sampling and Selection: Diversity; Different data
sampling leads to produce various ensemble learning
algorithms. For example, sampling uniform and with replacing1
the training data lead to Bagging algorithms, while the sampling
of a distribution of misclassified training data is the core of the
ensemble algorithms.

2. Training Member Classifiers; Ensemble learning
algorithms have been developed for training ensemble
classifiers, the most common of which are Bagging (similar
algorithms arc-x4 and random forests, Boosting (its various
types), stack generalization and hierarchical MoE [1].

3. Combining Ensemble Members; the last step in any
ensemble-based system, is a mechanism for combining
individual classifiers. The strategy used in this step depends on
the classifiers type. For example, classifiers such as SVM
generate only discrete-valued label outputs, which most
commonly used combination rules for these classifiers is
majority voting followed at a distant second by the Borda count.
Other classifiers, such as multilayer perceptron or (naive) Bayes
classifier, provide continuous valued class-specific outputs,
which are interpreted as the support given by the classifier to
each class. Some categorical ensemble methods include:

• Combining Class Labels (Majority Voting, Weighted
Majority Voting, Borda Count)

• Combining Continuous Outputs (Algebraic Combiners
like: Mean Rule, Weighted Average, trimmed mean,
Minimum/Maximum/Median Rule, Product Rule, Generalized
Mean, Decision Template) [1].

The combination of predictive classifiers with uncorrelated
errors in an ensemble is the main idea of the ensemble learning
algorithms in combining two algorithms. There is a linear
relationship between the degree of error reduction and the degree
to which patterns of errors made by individual models are
uncorrelated. [3]. There are several ways to combine various
classifiers:

1- Input manipulation: In this method, each base model is
fitted by a different training set and variable input samples.

2- Manipulated learning algorithm: In this method, the use
of each basic model varies. For example, one way is to
manipulate a basic model in the hypothesis space. This is done
by leading the base model to various convergence paths.

3- Partitioning: Diversity can be achieved by dividing the
original dataset into smaller subsets and then using each subset
to train a different inducer. In horizontal partitioning, we divide
the original dataset into several sets that include the entire
feature-set so that inducers differed only by their instances.
Vertical partitioning works in the opposite way as each inducer
uses the same instances but with different features

4- Output manipulation: This approach refers to techniques
that combine numerous binary classifiers into a single multiclass
classifier. Error-correcting output codes (ECOC) is a successful
example of this approach

1 Bootstrap

5- Ensemble hybridization: This approach combines at least
two strategies when creating the ensemble methods. The random
forest algorithm is the most well-known development of the
hybridization approach. RotBoost is an example of a hybrid of
the rotation forest and AdaBoost algorithms. In each iteration, a
new rotation matrix is generated and used to create a dataset. The
AdaBoost ensemble is induced from this dataset.

Ensemble learning methods can be divided into two main
categories: independent and dependent.

In the dependent framework, the output of each classifier
affects the structure of the next classification. Also, knowledge
created in previous repetitions guides learning in subsequent
iterations.

In the independent framework, each classifier is
independently constructed of other classifiers.

In some combining methods, you see both templates. Let’s
introduce each ensemble methods:

TABLE 1: Method categories [2]

Method name Fusion
method

Dependency Training approach

AdaBoost Weightning Dependent Input manipulation

Bagging Weightning Independent Input manipulation

Random forest Weightning Independent Ensemble
hybridization

Random
subspace
methods

Weightning Independent Ensemble
hybridization

Gradient
boosting
machines

Weightning Dependent Output manipulation

Error-correcting
output codes

Weightning Independent Output manipulation

Rotation forest Weightning Independent Manipulated
learning

Extremely
randomized trees

Weightning Independent Partitioning

Stacking Meta-learning Independent Manipulated
learning

� AdaBoost [5]: It is the most well-known algorithm to
build an ensemble model. Its main idea is focus on examples that
have misclassified training data in previous iteration. The focus
is based on the weight of each sample in the training dataset. In
the first repetition, the weight of all the samples is the same. In
each repetition, the weight of misclassified samples increases

and the weight of the classified samples decreases and all
weights have been normalized.

� Bagging [6]: It is an effective and simple method to
generate a group of independent models in which each classifier
taught using bootstrap samples of the dataset. To ensure the
adequacy of the samples in each classifier, each model contains
the same number of samples from the original data set. A
majority prediction rating is effective in determining the final
decision to predict the unseen sample [7].

� Random forest [8]: This algorithm was originally
designed for decision trees as base learners, and mainly designed
to select the subsets of the properties of the nodes during the
branching. Recent research suggests that Random Forest is more
resistant to other machine learning algorithms such as SVM,
Neural networks, especially with a small training dataset [9].

� Gradient boosting machines [10]: In this algorithm,
training of each classifier is dependent on the previously trained
classifiers. The main difference between this method and other
techniques is that the optimization of this method is used in the
function space.

� Rotation forest [11]: A method that causes a variety in
decision tree algorithms, with training each classifier in dataset
by rotating the specification space.

� Extremely randomized trees [12]: It is another method
for producing various collections with randomness training
process. It is similar to Random Forest, but there are two
differences: 1- Extremely randomized trees don’t apply the
bagging procedure to construct a set of the training samples for
each tree. The same input training set is used to train all trees. 2-
Extremely randomized trees pick a node split very extremely,
whereas Random Forest finds the best split among random
subset of variables [14].

Table1 briefly summarize Ensemble learning methods.

One of the problems in ensemble learning is overfitting. It is
said to be a bad phenomenon in statistics, in which the model's
degree of freedom is much higher than the real degree of
freedom, and thus, although the model yields a very good result
on training data, it has a high error on test data. Choosing the
right degree of freedom by Cross-validation and Regularization
is one of the ways to deal with this phenomenon.

The likelihood of overfitting is that the criterion of fitting the
model is not the same as the standard of evaluate it. To measure
the effectiveness of the model, not only it should be measured
its efficiency on training samples, but also measured the ability
of the model on unseen samples.

Overfitting occurs when the model begins to "memorize" the
data instead of "learning" in training step. Also, in ensemble
learning algorithms such as Adaboost, in each iteration, it
focuses on misclassified samples, it has a problem in noisy
dataset because it memorized the noisy data and as a result it
produces noise in training process and it leads to overfitting in
learning step. It is a main problem in machine learning.

Big data is characterized by properties such as speed,
diversity, accuracy, variability, scalability, and value. For
example, speed is important in real-time decision-making

systems, and variability refers to the dynamic nature of data that
may lead to produce drift. In recent years, researchers' focus is
on scalability of data mining algorithms [13].

III. RELATED WORKS

This section focuses on some ways and solutions that have
been presented and deal with overfitting.

AdaBoost algorithm learns by repeated calculations, and it
classifies by focusing on misclassified data [15]. That is why it
has tended to overfit to deal with noisy data. Overfitting occurs
when the model begins to "memorize" data instead of "learning”.

In ensemble learning algorithms like Adaboost
(Algorithm1), in each iteration, their focusing is on the
classification of samples that are classified incorrectly in
previous iteration, as a result it creates noise during the training
process, memorize the model and noisy data learning process,
causes overfitting in the algorithm. Moreover, this is a major
problem in machine learning. In thesis [15], it is stated that by
using a validation set that obtained from training data can be
prevented overfitting. To deal with overfitting, two algorithms
are presented, which are updated versions of Adaboost. The
proposed algorithms are the validboost algorithm (Algorithm 2)
and the cross-validated algorithm Adaboost (Algorithm 3).

One of the common ways to prevent overfitting is to use a
validation set to evaluate model and we have real error instead
of training errors. A development instance of this is cross-
validation. It has been observed that most changes occur in a few
first Adeboost iteration. In t’s iteration, the effect of a new
classifier on the ensemble algorithm is 1/t. That is why we
define:

τ ൌ
log 𝑡
log 𝑇

𝜖 ൌ 𝜏𝜖௩ ൅ ሺ1 െ 𝜏ሻ𝜖௧

Input: Dataset x, consisting of N objects ൻ𝑋ଵ⋯𝑋ே⟩ ∈ 𝑋 with labels
ൻ𝑦ଵ⋯𝑦ே⟩ ∈ 𝑌 ൌ ሼ1⋯ 𝑐ሽ
Input: Weak learning algorithm WeakLearn
Input: Number of iterations T

Initialize: Weight vector 𝑤௜
ଵ ൌ

ଵ

ே
 for 𝑖 ൌ 1⋯  𝑁

for t = 1 to T do
 Call Weaklearn, providing it with weights 𝑤௜

௧
 Get back hypothesis ℎ௧: 𝑋 → 𝑌
 Compute 𝜖 ൌ ∑ 𝑤௜

௧ே
௜ୀଵ ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿ

 if 𝜖 ൐ 1 െ
ଵ

௖
 then

 Set 𝛼௧ ൌ 0
 Set 𝑤௜

௧ାଵ ൌ 𝑤௜
௧

 else
 Compute 𝛼௧ ൌ logሺሺ1 െ 𝜖ሻ/𝜖ሻ ൅ log ሺ𝑐 െ 1ሻ
 Set 𝑤௜

௧ାଵ ൌ 𝑤௜
௧ exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ for all i

 Normalize 𝑤௜
௧ାଵ

 end
end
Output: Hypothesis 𝐻ሺ𝑥ሻ ൌ argmax

௬∈௒
∑ 𝛼௧ሾℎ௧ሺ𝑥ሻ ൌ 𝑦ሿ்

௧ୀଵ

Algorithm1: AdaBoost

Where “t” is the current iteration and T is the total number
of iteration and ϵ_v is the error weight in the test set and ϵ_t is
the error weight in the training set. In the first few iterations, the
value of τ will be small. As “t” increases, τ will be closer to “1”,
and the effect of validation will be high for preventing
overfitting.

In both algorithms, the set of data is divided into two categories:
training and validation. The size of the validation set is τN/2.

For each classifier in the ValidBoost algorithm, the error rate
is:

𝜖 ൌ 𝜏𝜖௩ ൅ ሺ1 െ 𝜏ሻ𝜖௧

And for each classifier in the Cross-Validated Adaboost
algorithm, the error rate is:

ϵ ൌ ሺ𝜖௩ ൅ 𝜖௧ሻ/2

If the error rate of classifier is greater than 1 െ ଵ

௖
 (c is the

number of classes), then that classifier will be deleted from the
process. Otherwise, weights are updated.
Updated in the ValidBoost algorithm is:

𝛼௧ ൌ log ሺሺ1 െ 𝜖ሻ/𝜖ሻ
𝑤௜

௧ାଵ ൌ 𝑤௜
௧exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ

Updated in the Cross-Vallidated Adabbost algorithm is:

𝛼௧ ൌ log ቆ
ሺ1 െ 𝜖ሻ

𝜖
ቇ ൅ ሺlogሺ𝑐 െ 1ሻሻ

𝑤௜
௧ାଵ ൌ 𝑤௜

௧exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ

The performance of validboost algorithm is similar to
Adaboost in encounter to non-noisy data, but in the face of noisy
data, it’s performance is higher than Adaboost algorithm, and it
does not suffer overfitting like Adaboost algorithm.

2 fully-connected layers

In paper [16] the authors point out the applications of deep
learning, especially artificial neural networks, they state that the
high number of parameters in CNN allow neural network to
learn complex features. And this leads to overfitting in training
data. they also state that, despite the proposed methods in this
issue, overfitting is still a problem at CNN. Among the many
factors that lead to overfitting, the number of FCLs2 parameters
should be considered. The authors of this article suggests the
SparseConnect method. SparseConnect is a simple idea to
reduce its overfitting by reducing the connections of CFLs.
Experimental results in the three benchmarks MNIST, CIFAR10
and ImageNet indicate that SparseConnect provides better
output than other methods.

The authors of [17] said that classic AdaBoost algorithm is a
collection of weak learners and can be used to construct a strong
classifier. This algorithm has limitations such as sensitivity to
noisy data. In this paper, a selective boosting method, sBoost, is
proposed to solve this problem. The focus of this method is
based on classifying efficiency instead of misclassified samples.
This methodology has been developed to efficiently classify
patterns with a noise level of less than 10%. The effectiveness of
the developed sBoost technique has been analyzed by a series of
simulation tests. The results of this analysis show that the
developed sBoost technique can improve the classification
accuracy and prevent overfitting.

In the paper [18], it is stated that there are some methods to
overcome the overfitting problem in the Bayesian algorithm, the

Input: Dataset x, consisting of N objects ൻ𝑋ଵ⋯𝑋ே⟩ ∈ 𝑋 with labels
ൻ𝑦ଵ⋯𝑦ே⟩ ∈ 𝑌 ൌ ሼ1⋯ 𝑐ሽ
Input: Weak learning algorithm WeakLearn
Input: Number of iterations T

Initialize: Weight vector 𝑤௜
ଵ ൌ

ଵ

ே
 for 𝑖 ൌ 1⋯  𝑁

for t = 1 to T do

 Set  ൌ
୪୭୥ ௧

୪୭୥ ்

 Split 𝑥 into 𝑥௩ of size 𝑁
2ൗ and 𝑥௧

 Call Weaklearn on 𝑥௧, providing it with weights 𝑤௜
௧ for ሼ𝑖: 𝑥௜ ∈

𝑥௧ሽ
 Get back hypothesis ℎ௧: 𝑋 → 𝑌
 Compute 𝜖௩ ൌ ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫ೡሽ
 Compute 𝜖௧ ൌ ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫೟ሽ
 Set 𝜖 ൌ  𝜖௩ ൅ ሺ1 െ ሻ𝜖௧

 if 𝜖 ൐ 1 െ
ଵ

௖
 then

 Set 𝛼௧ ൌ 0
 Set 𝑤௜

௧ାଵ ൌ 𝑤௜
௧

 else
 Compute 𝛼௧ ൌ logሺሺ1 െ 𝜖ሻ/𝜖ሻ ൅ log ሺ𝑐 െ 1ሻ
 Set 𝑤௜

௧ାଵ ൌ 𝑤௜
௧ exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ for all i

 Normalize 𝑤௜
௧ାଵ

 end
end
Output: Hypothesis 𝐻ሺ𝑥ሻ ൌ argmax

௬∈௒
∑ 𝛼௧ሾℎ௧ሺ𝑥ሻ ൌ 𝑦ሿ்

௧ୀଵ

Algorithm2: ValidBoost

Input: Dataset x, consisting of N objects ൻ𝑋ଵ⋯𝑋ே⟩ ∈ 𝑋 with labels
ൻ𝑦ଵ⋯𝑦ே⟩ ∈ 𝑌 ൌ ሼ1⋯ 𝑐ሽ
Input: Weak learning algorithm WeakLearn
Input: Number of iterations T
Input: Number of folds k

Initialize: Weight vector 𝑤௜
ଵ ൌ

ଵ

ே
 for 𝑖 ൌ 1⋯  𝑁

for t = 1 to T do
 Split 𝑥 into 𝑘 sets of equal size and with equal prior probabilities,
𝑋ଵ⋯  𝑋௞
 for f =1 to k do
 Set the validation set 𝑥௩ to 𝑥௙
 Set the training set 𝑥௧ to ⋃ 𝑥௜௜ஷ௙
 Call Weaklearn on 𝑥௧, providing it with weights 𝑤௜

௧ for ሼ𝑖: 𝑥௜ ∈
𝑥௧ሽ
 Get back hypothesis ℎ௧௙: 𝑋 → 𝑌
 Compute 𝜖௩ ൌ ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫ೡሽ
 Compute 𝜖௧ ൌ ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫೟ሽ
 Set 𝜖 ൌ ሺ𝜖௩ ൅ 𝜖௧ሻ 2⁄

 if 𝜖 ൐ 1 െ
ଵ

௖
 then

 Set 𝛼௧௙ ൌ 0
 Set 𝑤௜

௧ାଵ ൌ 𝑤௜
௧ for all i

 else
 Compute 𝛼௧௙ ൌ logሺሺ1 െ 𝜖ሻ/𝜖ሻ ൅ log ሺ𝑐 െ 1ሻ
 Set 𝑤௜

௧ାଵ ൌ 𝑤௜
௧ exp ሺ𝛼௧௙ሾℎ௧௙ሺ𝑥௜ሻ ് 𝑦௜ሿሻ for all i

 Normalize 𝑤௜
௧ାଵ

 end
 end
end
Output: Hypothesis 𝐻ሺ𝑥ሻ ൌ argmax

௬∈௒
∑ ∑ 𝛼௧௙ሾℎ௧௙ሺ𝑥ሻ ൌ 𝑦ሿ்

௧ୀଵ
௞
௙ୀଵ

Algorithm3: Cross-Validated AdaBoost

first method is to introduce a new regularization weight
parameter; another method is to stop early, which can be used to
stopped repetitive branching process. Also, in this study, cross-
validation is described as a simple solution to get better
performance. It also suggests that in order to minimize
overfitting, the data set should be re-sampled every iteration into
the training and validation collections.

As stated in paper [15], the root of overfitting in Adaboost
arises from the fact that Adaboost is a repetitive method that
wants to reduce the error of classification, and one of reasons of
overfitting is that the base learners are not sufficiently weak. In
Adaboost, the important key issues are selection and integration
of classifiers. The goal of each classifier is to reduce the amount
of composition of bias and variance. The ensemble methods do
this well, and combine a high-bias classifier with low-bias
classifier and a high-variance classifier with a low-variance
classifier. In this thesis, the author makes several adjustments on
Adaboost and examines the effect of each on the classification
efficiency, and its proposed changes improve classifiers
efficiency when training data is very noisy.

In paper [19] that outcomes of [15], It is states that Adaboost
is an iterative algorithm that quickly rises high performance by
focusing on objects that are hardly classified. And because of
that, with noisy data set, it is strongly inclined to overfitting. It
is also stated that it is possible to avoid overfitting by using
validation dataset obtained from the same noisy training dataset.
In this paper, the ValidBoost algorithm is introduced, which is
an Adaboost algorithm that uses validation dataset. ValidBoost's
performance is the same as the performance of Adaboost when
dataset has no noise, but It has been improved Adaboost
performance with noisy data. The validBoost algorithm is less
likely to overfit than Adaboost algorithm.

So far, several methods have been proposed to prevent
Adaboost overfitting [20].

The author of paper [4] said one of the major challenges in
training deep neural network is prevention of overfitting. Many
techniques have been proposed to reduce overfitting without to
need large amount of training data, such as enhancing and
reinforcement data or new settings like Dropout. In this paper, a
new regulation called Decov has been proposed that
significantly reduces overfitting. Decov can be used in both one
layer or multilayer of neural network. Decov does not need
supervision, so it can be added to any activation set. In this paper,
Decov is used for completely connected layers and affects all the
layered parameters that are used. Decov reduces overfitting by
the difference between training accuracy and test accuracy.
Decov Acts like a regulator, and performance of algorithm with
decov is usually better than without Decov or Dropout.

The purpose of paper [10] is to present the concept drift, and
also is a new learning algorithm that used to deal with noisy data
and data that changes the samples and their performance
(concept drift). The subject matter is that a characteristic of the
flow data is their variability, and this causes some instances that
enter the system be noisy, or caused deviations in other samples.
Therefore, in the proposed algorithm, a factor called confidence
level specified that each classifier which its confidence level is
less than the threshold is eliminated from the making decision in
ensemble algorithm. This threshold is also proven that should

not be static and should be dynamic. Therefore, there is an
adjustment factor in the algorithm that if the result of
classification of the algorithm is the same with one classifier or
without that classifier, and the threshold is higher than zero, then
the threshold would be lowered to the size of the adjustment
factor, and if the results are not the same and the threshold is less
than one, then we increase the threshold as much as the decision
factor. Algoritm4.

In this paper, we introduce a factor called the Equalized Loss
of Accuracy (ELA), which helps us to examine whether the
performance of the algorithm on noisy data is related to actual
robustness of algorithm, or only because of the differences in
initial predictive accuracies.

𝐸𝐿𝐴௫% ൌ
ሺ100 െ 𝐴𝐶𝐶௫%ሻ

𝐴𝐶𝐶଴%

IV. PROPOSED METHOD

The proposed method is integrated the ValidBoost method
with a dynamic threshold. The basic of this method is the
ValidBoost algorithm, with the difference that each time the base
classifier error rate is compared with a confidence level, if the
error exceeds this level, a new holdout sampling of the
substituted training data is performed.

It replaces the previous training data, but if the error rate of
the underlying class is lower than the confidence level, the
confidence level will be replaced by the error rate of the previous
step, and go to next iteration.

This algorithm will also be run n times. Each execution time
the maximum number of classifier in the algorithm will be n. At
each run, if the algorithm error rate exceeds a threshold, the
training data is re-selected by bootstrap sampling. And if lower,
the threshold is lowered by the adjustment factor. The algorithm
is executed in the next loop with the number of new iterations.
The proposed algorithm pseudocode is visible in Algorithm 5.

Input: ensemble ෡ , abstaining threshold 𝜃 ∈ ሾ01ሿ, adjustment factor
𝑠 ∈ ሾ01ሿ
𝜃 ←initialize threshold
L ←size of the ensemble
While end of stream = FALSE do
 Obtain new instance x from the stream
 for 𝑙 ← 1 ; 𝑙 ൑ 𝐿; 𝑙 ൅ ൅ do
 Obtain classifier support 𝐹೗

ሺ𝑥ሻ for each class
 if max௝∈ெ𝐹೗

ሺ𝑥𝑗ሻ ൏ 𝜃 then
 ୪ abstains from the decision
 else
 ୪ participates in voting
 z ← result of non-abstaining classifiers voting
 Obtain lable y of object x
 if z==y then then
 𝜃 ← 𝜃 െ s ሺif 𝜃 ൐ 0ሻ
 else
 𝜃 ← 𝜃 െ s ሺif 𝜃 ൐ 0ሻ
__
Algorthm4: Proposed general framework for dynamic abstaining

online ensembles.

V. EXPERIMENTAL

The datasets used in our experiment selected from the UCI
Machine Learning Repository site and the Kaggle site.
Information on this dataset given in Table 1.

TABLE 2: DataSet information

 dataset #instance #feathers #class balanced drift-
noise

1 opticaldigits 947 1024 10 balanced

2 abalone 4177 8 29 imbalanced

3 electricity 45312 8 2 balanced yes

4 default-of-
credit-card-

clients

30000 24 2 imbalanced

The proposed algorithm implemented on four different
datasets, multiclass or binary, balanced or imbalanced. For
comparison, the zero_one_loss criterion, a common
measurement in classification learning. The zero_one_loss is a
common measurement in classification learning, which means
that the predictor response is incorrect or false. Zero means that
the prediction is correct, and one means that a mistake occurs
during the classification. It is better that this measurement is
closer to zero. Zero_one_loss measurement is similar to the
mean squared error regression.

As you can see from the results of the implementation of
these three algorithms on the different datasets in Figures one to
three, the performance of the proposed method is better than that
of Adabost and ValidBust. This dataset does not include noise
data.

Figure 1: Comparing AdaBoost, ValidBoost and Proposed Algorithm,
Dataset: OpticalDigits

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120

OpticalDigits

Adaboost_zero_one_loss_train

Adaboost_zero_one_loss_test

Validboost_zero_one_loss_train

Validboost_zero_one_loss_test

Proposed Algorithm_zero_one_loss_train

Proposed Algorithm_zero_one_loss_test

Input: Dataset x, consisting of N objects ൻ𝑋ଵ⋯𝑋ே⟩ ∈ 𝑋 with labels
ൻ𝑦ଵ⋯𝑦ே⟩ ∈ 𝑌 ൌ ሼ1⋯ 𝑐ሽ
Input: Weak learning algorithm WeakLearn
Input: Number of iterations T
Input: 𝑎  𝜃 ∈ ሾ01ሿ, adjustment factor 𝑠 ∈ ሾ01ሿ
Initialize: Weight vector 𝑤௜

ଵ ൌ
ଵ

ே
 for 𝑖 ൌ 1⋯  𝑁

𝜃 ←initialize threshold
for i = 1 to n do
T = i

𝑎 ←confidence level
for t = 1 to T do

 Set  ൌ
୪୭୥ ௧

୪୭୥ ்

 Split 𝑥 into 𝑥௩ of size 𝑁
2ൗ and 𝑥௧

 Call Weaklearn on 𝑥௧, providing it with weights 𝑤௜
௧ for

ሼ𝑖: 𝑥௜ ∈ 𝑥௧ሽ
 Get back hypothesis ℎ௧: 𝑋 → 𝑌
 Compute 𝜖௩ ൌ ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫ೡሽ
 Compute 𝜖௧ ൌ ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫೟ሽ
 Set 𝜖 ൌ  𝜖௩ ൅ ሺ1 െ ሻ𝜖௧

 if 𝜖 ൐ 1 െ
ଵ

௖
 then

 Set 𝛼௧ ൌ 0
 Set 𝑤௜

௧ାଵ ൌ 𝑤௜
௧

 else
 Compute 𝛼௧ ൌ logሺሺ1 െ 𝜖ሻ/𝜖ሻ ൅ log ሺ𝑐 െ 1ሻ
 Set 𝑤௜

௧ାଵ ൌ 𝑤௜
௧ exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ for all i

 Normalize 𝑤௜
௧ାଵ

 end
 if e < a then then
 a=e

 else
 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝ሺ𝑥ሻ

end
Output: Hypothesis 𝐻ሺ𝑥ሻ ൌ argmax

௬∈௒
∑ 𝛼௧ሾℎ௧ሺ𝑥ሻ ൌ 𝑦ሿ்

௧ୀଵ

Compute Error = zero_one_loss ()
if Error > 𝜃 then then
 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝ሺ𝑥ሻ
 𝜃 = Error
else
 𝜃 = 𝜃 - s

Algorithm5: Proposed Algorithm

Figure 2: Comparing AdaBoost, ValidBoost and Proposed Algorithm,
Dataset: Abalone

Figure 3: Comparing AdaBoost, ValidBoost and Proposed Algorithm,
Dataset: Default-of-credit-card-clients

Figure 4: Comparing AdaBoost, ValidBoost and Proposed Algorithm,
Dataset: Electricity

The Electricity dataset is a binary balanced data set with
noisy data. The Adaboost algorithm is very sensitive to noise
data and suffering from overfitting. As you can see in the
Adaboost algorithm, the error rate of the training data
significantly reduced but the error rate of test data did not
decrease; it means that the algorithm on the training data is much
better than the test data. It is the concept of overfitting that occurs
because of noisy data, and the algorithm starts to memorize the
model of noisy data rather than learning. As you can see in Fig.
5, the proposed algorithm slightly improves the Adaboost
overfitting problem and performs better than ValidBoost.

VI. CONCLUSION

In this paper, we studied various verions of Adaboost
algorithm. Adaboost tries to train a sequence of classfiers where
each new classifier is more focused on those instances that have
been misclassified by the preceding classifiers. Therefore, if the
data samples are corrupted with noise, AdaBoost might lead to
overfitted results. To tackle this problem, Dirk introduced
ValidBoost [15]. We made some minor modifications in
ValidBoost by introducing a dynamic threshold in order to
control the reduce even more the error rate of the algorithm.
Experimental simulations show that our proposed algorithm
performs better than both ValidBoost and AdaBoost in terms of
error rates and is less sensitive to noise than AdaBoost.

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0 20 40 60 80 100 120

Abalone

Adaboost_zero_one_loss_train

Adaboost_zero_one_loss_test

Validboost_zero_one_loss_train

Validboost_zero_one_loss_test

Proposed Algorithm_zero_one_loss_train

Proposed Algorithm_zero_one_loss_test

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

default-of-credit-card-clients

Adaboost_zero_one_loss_train

Adaboost_zero_one_loss_test

Validboost_zero_one_loss_train

Validboost_zero_one_loss_test

Proposed Algorithm_zero_one_loss_train

Proposed Algorithm_zero_one_loss_test

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

electricity

Adaboost_zero_one_loss_train

Adaboost_zero_one_loss_test

Validboost_zero_one_loss_train

Validboost_zero_one_loss_test

Proposed Algorithm_zero_one_loss_train

Proposed Algorithm_zero_one_loss_test

REFERENCES

[1] Zhang, Cha, and Yunqian Ma, eds. “Ensemble machine learning: methods

and applications.”, Springer Science & Business Media, 2012.

[2] Sagi, Omer, and Lior Rokach. “Ensemble learning: A survey.” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8.4
(2018): e1249.

[3] Ali, Kamal M., and Michael John Pazzani. “On the link between error
correlation and error reduction in decision tree ensembles.” Information
and Computer Science, University of California, Irvine, 1995.

[4] Cogswell, Michael, et al. "Reducing overfitting in deep networks by
decorrelating representations." Published as a conference paper at ICLR
2016.

[5] Freund, Yoav, and Robert E. Schapire. “A desicion-theoretic
generalization of on-line learning and an application to boosting.”
European conference on computational learning theory. Springer, Berlin,
Heidelberg, 1995.

[6] Breiman, Leo. “Bagging predictors.” Machine learning 24.2 (1996): 123-
140.

[7] Kuncheva, Ludmila I. “Combining pattern classifiers: methods and
algorithms.” John Wiley & Sons, 2014.

[8] Amit, Yali, and Donald Geman. “Randomized Inquiries About Shape: An
Application to Handwritten Digit Recognition.” No. TR-401. CHICAGO
UNIV IL DEPT OF STATISTICS, 1994.

[9] Han, Te, et al. “Comparison of random forest, artificial neural networks
and support vector machine for intelligent diagnosis of rotating
machinery.” Transactions of the Institute of Measurement and Control
40.8 (2018): 2681-2693.

[10] Krawczyk, Bartosz, and Alberto Cano. "Online ensemble learning with
abstaining classifiers for drifting and noisy data streams." Applied Soft
Computing 68 (2018): 677-692.

[11] Rodriguez, Juan José, Ludmila I. Kuncheva, and Carlos J. Alonso.
“Rotation forest: A new classifier ensemble method.” IEEE transactions
on pattern analysis and machine intelligence 28.10 (2006): 1619-1630.

[12] Geurts, Pierre, Damien Ernst, and Louis Wehenkel. “Extremely
randomized trees.” Machine learning 63.1 (2006): 3-42.

[13] Wu, Xindong, et al. “Data mining with big data.” IEEE transactions on
knowledge and data engineering 26.1 (2013): 97-107.

[14] https://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

[15] Dirk W. J. Meijer, “Regularizing AdaBoost to prevent overfitting on label
noise”, Master thesis, the Delft University of Technology, 2016 .

[16] Xu, Qi, et al. “Overfitting remedy by sparsifying regularization on fully-
connected layers of CNNs.” Neurocomputing 328 (2019): 69-74.

[17] Li, De Z., Wilson Wang, and Fathy Ismail. "A selective boosting
technique for pattern classification." Neurocomputing 156 (2015): 186-
192.

[18] Julien-Charles Lévesque, “Bayesian Hyperparameter Optimization:
Overfitting, Ensembles and Conditional Spaces”, Thèse, 2018.

[19] Meijer, Dirk WJ, and David MJ Tax. "Regularizing AdaBoost with
validation sets of increasing size." 2016 23rd International Conference on
Pattern Recognition (ICPR). IEEE, 2016.

[20] Bylander, Tom, and Lisa Tate. "Using Validation Sets to Avoid
Overfitting in AdaBoost." Flairs conference. 2006.

