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Abstract— AdaBoost is perhaps one of the most well-known 
ensemble learning algorithms. In simple terms, the idea in 
AdaBoost is to train a number of weak learners in an increamental 
fashion where each new learner tries to focus more on those 
samples that were misclassfied by the preceding classifiers. 
Consequently, in the presence of noisy data samples, the new 
leraners will somehow memorize the data, which in turn will lead 
to an overfitted model. The main objective of this paper is to 
provide a generalized version of the Adaboost algorithm that 
avoids overfitting, and performs better when the data samples are 
corrupted with noise. To this end, we make use of another 
ensemble learning algorithm called ValidBoost [15], and introduce 
a mechanism to dynamically determine the thresholds for both the 
error rate of each classifier and the error rate in each iteration. 
These threshholds enable us to control the error rate of the 
algorithm. Experimental simulations has been made on several 
benchmark datasets to evaluate the performance of our proposed 
algorithm. 

Keywords—Ensemble learning algorithms, Boosting, Adaboost, 
Overfitting, Noise, zero_one_loss. 

I.  INTRODUCTION  

For decades, ensemble learning has attracted a lot of 
attention among computer science and machine learning 
researchers. In fact, ensemble learning has been developed to 
reduce variance and improve the accuracy of decision-making 
problems. Ideas based on ensemble learning are also used in our 
life. When we consult others and decide on the majority's 
opinion, we actually use the ensemble learning method [1]. 

For example, in 1785, the French mathematician and 
philosopher Nicolas de Caritat presented the famous Condorcet's 
jury. This is a jury opinion that requires a decision with a binary 
result. This has two main constraints: 1. Voters are independent; 
2. there are only two possible outcomes. He states that the 
combination of information from different sources in decision 
making is much better than decision-making based on a single 
source of information [2]. 

Ensemble learning methods are considered as an advanced 
solution for many of the machine learning problems. These 
methods increase the efficiency of the model by training several 
models and combining their results [2]. 

In the following we will read: 

Section2: Definition of Ensemble Learning, Section3: 
Related worked, Section4: provides a generalized Adaboost 
algorithm, Section5: Experimental results, at the end: 
Conclusions. 

II. ENSEMBLE LEARNING  

In 2017, Omer Sagi and Lior Rokach introduced the concepts 
and methods of traditional and modern ensemble learning and 
discussed new challenges in this field, saying that the main 
hypothesis of ensemble learning is that by combining Several 
models, the error of one classifier is likely to be covered by 
another, and as a result, the overall ensemble learning 
performance is better than one classifier [2]. 

The classification error rate consists of two controllable 
components: the bias is the precision of classifier, and the 
variance is the accuracy of model with different training data. 
These two components have a trade-off relationship with each 
other, and the classifier with low bias class tends to have higher 
variance and vice versa. The purpose of the ensemble learning 
systems is to create several classifiers with similar bias, which 
after the combination of their results; the variance can be 
reduced [1]. 

In ensemble learning, each classifier creates different errors 
on the samples, but generally all agree on the result of the 
classification correctly. As a result, the classification accuracy is 
increased. Therefore, averaging the results of each classifier 
reduces the error of ensemble classification. Here are two 
important points. First, there are several ways to integrate the 
classifier in ensemble-based systems, averaging is one of them. 
Second, integrating the results of classifier do not necessarily 
lead to guarantee a better performance than the best classifier in 
the ensemble-based system, but it reduces the likelihood of 
choosing a poorly-efficient classifier. In general, if we knew 
which class would be the best, it would not be necessary to use 
ensemble-based system, but because this is unclear, we need an 
ensemble learning system [1]. 

Three strategies are needed to build an effective ensemble 
leaning model: 



1. Data Sampling and Selection: Diversity; Different data 
sampling leads to produce various ensemble learning 
algorithms. For example, sampling uniform and with replacing1  
the training data lead to Bagging algorithms, while the sampling 
of a distribution of misclassified training data is the core of the 
ensemble algorithms. 

2. Training Member Classifiers; Ensemble learning 
algorithms have been developed for training ensemble 
classifiers, the most common of which are Bagging (similar 
algorithms arc-x4 and random forests, Boosting (its various 
types), stack generalization and hierarchical MoE [1]. 

3. Combining Ensemble Members; the last step in any 
ensemble-based system, is a mechanism for combining 
individual classifiers. The strategy used in this step depends on 
the classifiers type. For example, classifiers such as SVM 
generate only discrete-valued label outputs, which most 
commonly used combination rules for these classifiers is 
majority voting followed at a distant second by the Borda count. 
Other classifiers, such as multilayer perceptron or (naive) Bayes 
classifier, provide continuous valued class-specific outputs, 
which are interpreted as the support given by the classifier to 
each class. Some categorical ensemble methods include: 

• Combining Class Labels (Majority Voting, Weighted 
Majority Voting, Borda Count) 

• Combining Continuous Outputs (Algebraic Combiners 
like: Mean Rule, Weighted Average, trimmed mean, 
Minimum/Maximum/Median Rule, Product Rule, Generalized 
Mean, Decision Template) [1]. 

The combination of predictive classifiers with uncorrelated 
errors in an ensemble is the main idea of the ensemble learning 
algorithms in combining two algorithms. There is a linear 
relationship between the degree of error reduction and the degree 
to which patterns of errors made by individual models are 
uncorrelated. [3]. There are several ways to combine various 
classifiers: 

1- Input manipulation: In this method, each base model is 
fitted by a different training set and variable input samples. 

2- Manipulated learning algorithm: In this method, the use 
of each basic model varies. For example, one way is to 
manipulate a basic model in the hypothesis space. This is done 
by leading the base model to various convergence paths. 

3- Partitioning: Diversity can be achieved by dividing the 
original dataset into smaller subsets and then using each subset 
to train a different inducer. In horizontal partitioning, we divide 
the original dataset into several sets that include the entire 
feature-set so that inducers differed only by their instances. 
Vertical partitioning works in the opposite way as each inducer 
uses the same instances but with different features 

4- Output manipulation: This approach refers to techniques 
that combine numerous binary classifiers into a single multiclass 
classifier. Error-correcting output codes (ECOC) is a successful 
example of this approach 
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5- Ensemble hybridization: This approach combines at least 
two strategies when creating the ensemble methods. The random 
forest algorithm is the most well-known development of the 
hybridization approach. RotBoost is an example of a hybrid of 
the rotation forest and AdaBoost algorithms. In each iteration, a 
new rotation matrix is generated and used to create a dataset. The 
AdaBoost ensemble is induced from this dataset. 

Ensemble learning methods can be divided into two main 
categories: independent and dependent. 

In the dependent framework, the output of each classifier 
affects the structure of the next classification. Also, knowledge 
created in previous repetitions guides learning in subsequent 
iterations. 

In the independent framework, each classifier is 
independently constructed of other classifiers.  

In some combining methods, you see both templates. Let’s 
introduce each ensemble methods: 

 

TABLE 1: Method categories [2] 

Method name Fusion 
method 

Dependency Training approach 

AdaBoost Weightning Dependent Input manipulation 

Bagging Weightning Independent Input manipulation 

Random forest Weightning Independent Ensemble 
hybridization 

Random 
subspace 
methods 

Weightning Independent Ensemble 
hybridization 

Gradient 
boosting 
machines 

Weightning Dependent Output manipulation 

Error-correcting 
output codes 

Weightning Independent Output manipulation 

Rotation forest Weightning Independent Manipulated 
learning 

Extremely 
randomized trees 

Weightning Independent Partitioning 

Stacking Meta-learning Independent Manipulated 
learning 

 
 

� AdaBoost [5]: It is the most well-known algorithm to 
build an ensemble model. Its main idea is focus on examples that 
have misclassified training data in previous iteration. The focus 
is based on the weight of each sample in the training dataset. In 
the first repetition, the weight of all the samples is the same. In 
each repetition, the weight of misclassified samples increases 



and the weight of the classified samples decreases and all 
weights have been normalized. 

� Bagging [6]: It is an effective and simple method to 
generate a group of independent models in which each classifier 
taught using bootstrap samples of the dataset. To ensure the 
adequacy of the samples in each classifier, each model contains 
the same number of samples from the original data set. A 
majority prediction rating is effective in determining the final 
decision to predict the unseen sample [7]. 

� Random forest [8]: This algorithm was originally 
designed for decision trees as base learners, and mainly designed 
to select the subsets of the properties of the nodes during the 
branching. Recent research suggests that Random Forest is more 
resistant to other machine learning algorithms such as SVM, 
Neural networks, especially with a small training dataset [9]. 

� Gradient boosting machines [10]: In this algorithm, 
training of each classifier is dependent on the previously trained 
classifiers. The main difference between this method and other 
techniques is that the optimization of this method is used in the 
function space. 

� Rotation forest [11]: A method that causes a variety in 
decision tree algorithms, with training each classifier in dataset 
by rotating the specification space. 

� Extremely randomized trees [12]: It is another method 
for producing various collections with randomness training 
process. It is similar to Random Forest, but there are two 
differences: 1- Extremely randomized trees don’t apply the 
bagging procedure to construct a set of the training samples for 
each tree. The same input training set is used to train all trees. 2- 
Extremely randomized trees pick a node split very extremely, 
whereas Random Forest finds the best split among random 
subset of variables [14]. 

Table1 briefly summarize Ensemble learning methods.  

One of the problems in ensemble learning is overfitting. It is 
said to be a bad phenomenon in statistics, in which the model's 
degree of freedom is much higher than the real degree of 
freedom, and thus, although the model yields a very good result 
on training data, it has a high error on test data. Choosing the 
right degree of freedom by Cross-validation and Regularization 
is one of the ways to deal with this phenomenon. 

The likelihood of overfitting is that the criterion of fitting the 
model is not the same as the standard of evaluate it. To measure 
the effectiveness of the model, not only it should be measured 
its efficiency on training samples, but also measured the ability 
of the model on unseen samples. 

Overfitting occurs when the model begins to "memorize" the 
data instead of "learning" in training step. Also, in ensemble 
learning algorithms such as Adaboost, in each iteration, it 
focuses on misclassified samples, it has a problem in noisy 
dataset because it memorized the noisy data and as a result it 
produces noise in training process and it leads to overfitting in 
learning step. It is a main problem in machine learning. 

Big data is characterized by properties such as speed, 
diversity, accuracy, variability, scalability, and value. For 
example, speed is important in real-time decision-making 

systems, and variability refers to the dynamic nature of data that 
may lead to produce drift. In recent years, researchers' focus is 
on scalability of data mining algorithms [13]. 

 

III. RELATED WORKS 

This section focuses on some ways and solutions that have 
been presented and deal with overfitting. 

AdaBoost algorithm learns by repeated calculations, and it 
classifies by focusing on misclassified data [15]. That is why it 
has tended to overfit to deal with noisy data. Overfitting occurs 
when the model begins to "memorize" data instead of "learning”. 

In ensemble learning algorithms like Adaboost 
(Algorithm1), in each iteration, their focusing is on the 
classification of samples that are classified incorrectly in 
previous iteration, as a result it creates noise during the training 
process, memorize the model and noisy data learning process, 
causes overfitting in the algorithm. Moreover, this is a major 
problem in machine learning. In thesis [15], it is stated that by 
using a validation set that obtained from training data can be 
prevented overfitting. To deal with overfitting, two algorithms 
are presented, which are updated versions of Adaboost. The 
proposed algorithms are the validboost algorithm (Algorithm 2) 
and the cross-validated algorithm Adaboost (Algorithm 3). 

 

 

One of the common ways to prevent overfitting is to use a 
validation set to evaluate model and we have real error instead 
of training errors. A development instance of this is cross-
validation. It has been observed that most changes occur in a few 
first Adeboost iteration. In t’s iteration, the effect of a new 
classifier on the ensemble algorithm is 1/t. That is why we 
define: 

τ ൌ  
log 𝑡
log 𝑇

 

𝜖 ൌ  𝜏𝜖௩ ൅ ሺ1 െ 𝜏ሻ𝜖௧ 

Input: Dataset x, consisting of N objects ൻ𝑋ଵ⋯𝑋ே⟩ ∈ 𝑋 with labels 
ൻ𝑦ଵ⋯𝑦ே⟩ ∈ 𝑌 ൌ ሼ1⋯ 𝑐ሽ 
Input: Weak learning algorithm WeakLearn 
Input: Number of iterations T 

Initialize: Weight vector 𝑤௜
ଵ ൌ  

ଵ

ே
 for 𝑖 ൌ 1⋯  𝑁 

for t = 1 to T do 
      Call Weaklearn, providing it with weights 𝑤௜

௧ 
      Get back hypothesis ℎ௧: 𝑋 → 𝑌 
      Compute 𝜖 ൌ  ∑ 𝑤௜

௧ே
௜ୀଵ ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿ 

      if 𝜖 ൐ 1 െ
ଵ

௖
 then 

             Set 𝛼௧ ൌ 0 
             Set 𝑤௜

௧ାଵ ൌ  𝑤௜
௧ 

      else  
             Compute 𝛼௧ ൌ logሺሺ1 െ 𝜖ሻ/𝜖ሻ ൅ log ሺ𝑐 െ 1ሻ 
             Set 𝑤௜

௧ାଵ ൌ  𝑤௜
௧ exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ for all i 

             Normalize 𝑤௜
௧ାଵ 

      end 
end 
Output: Hypothesis 𝐻ሺ𝑥ሻ ൌ argmax

௬∈௒
∑ 𝛼௧ሾℎ௧ሺ𝑥ሻ ൌ 𝑦ሿ்

௧ୀଵ  

 
Algorithm1: AdaBoost 



Where “t” is the current iteration and T is the total number 
of iteration and ϵ_v is the error weight in the test set and ϵ_t is 
the error weight in the training set. In the first few iterations, the 
value of τ will be small. As “t” increases, τ will be closer to “1”, 
and the effect of validation will be high for preventing 
overfitting. 

In both algorithms, the set of data is divided into two categories: 
training and validation. The size of the validation set is τN/2. 

 

For each classifier in the ValidBoost algorithm, the error rate 
is: 

𝜖 ൌ  𝜏𝜖௩ ൅ ሺ1 െ 𝜏ሻ𝜖௧ 

And for each classifier in the Cross-Validated Adaboost 
algorithm, the error rate is: 

ϵ ൌ ሺ𝜖௩ ൅ 𝜖௧ሻ/2 

If the error rate of classifier is greater than 1 െ ଵ

௖
 (c is the 

number of classes), then that classifier will be deleted from the 
process. Otherwise, weights are updated. 
Updated in the ValidBoost algorithm is: 
 

𝛼௧ ൌ log ሺሺ1 െ 𝜖ሻ/𝜖ሻ 
𝑤௜

௧ାଵ ൌ  𝑤௜
௧exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ 

Updated in the Cross-Vallidated Adabbost algorithm is: 

𝛼௧ ൌ log ቆ
ሺ1 െ 𝜖ሻ

𝜖
ቇ ൅ ሺlogሺ𝑐 െ 1ሻሻ 

𝑤௜
௧ାଵ ൌ  𝑤௜

௧exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ 

The performance of validboost algorithm is similar to 
Adaboost in encounter to non-noisy data, but in the face of noisy 
data, it’s performance is higher than Adaboost algorithm, and it 
does not suffer overfitting like Adaboost algorithm. 

                                                            
2 fully-connected layers 

In paper [16] the authors point out the applications of deep 
learning, especially artificial neural networks, they state that the 
high number of parameters in CNN allow neural network to 
learn complex features. And this leads to overfitting in training 
data. they also state that, despite the proposed methods in this 
issue, overfitting is still a problem at CNN. Among the many 
factors that lead to overfitting, the number of FCLs2  parameters 
should be considered. The authors of this article suggests the 
SparseConnect method. SparseConnect is a simple idea to 
reduce its overfitting by reducing the connections of CFLs. 
Experimental results in the three benchmarks MNIST, CIFAR10 
and ImageNet indicate that SparseConnect provides better 
output than other methods. 

 

The authors of [17] said that classic AdaBoost algorithm is a 
collection of weak learners and can be used to construct a strong 
classifier. This algorithm has limitations such as sensitivity to 
noisy data. In this paper, a selective boosting method, sBoost, is 
proposed to solve this problem. The focus of this method is 
based on classifying efficiency instead of misclassified samples. 
This methodology has been developed to efficiently classify 
patterns with a noise level of less than 10%. The effectiveness of 
the developed sBoost technique has been analyzed by a series of 
simulation tests. The results of this analysis show that the 
developed sBoost technique can improve the classification 
accuracy and prevent overfitting. 

In the paper [18], it is stated that there are some methods to 
overcome the overfitting problem in the Bayesian algorithm, the 

Input: Dataset x, consisting of N objects ൻ𝑋ଵ⋯𝑋ே⟩ ∈ 𝑋 with labels 
ൻ𝑦ଵ⋯𝑦ே⟩ ∈ 𝑌 ൌ ሼ1⋯ 𝑐ሽ 
Input: Weak learning algorithm WeakLearn 
Input: Number of iterations T 

Initialize: Weight vector 𝑤௜
ଵ ൌ  

ଵ

ே
 for 𝑖 ൌ 1⋯  𝑁 

for t = 1 to T do 

      Set  ൌ  
୪୭୥ ௧

୪୭୥ ்
 

      Split 𝑥 into 𝑥௩ of size 𝑁
2ൗ  and 𝑥௧ 

      Call Weaklearn on 𝑥௧, providing it with weights 𝑤௜
௧ for ሼ𝑖: 𝑥௜ ∈

𝑥௧ሽ 
      Get back hypothesis ℎ௧: 𝑋 → 𝑌 
      Compute 𝜖௩ ൌ  ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫ೡሽ  
      Compute 𝜖௧ ൌ  ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫೟ሽ  
      Set 𝜖 ൌ   𝜖௩ ൅ ሺ1 െ ሻ𝜖௧ 

      if 𝜖 ൐ 1 െ
ଵ

௖
 then 

             Set 𝛼௧ ൌ 0 
             Set 𝑤௜

௧ାଵ ൌ  𝑤௜
௧ 

      else  
             Compute 𝛼௧ ൌ logሺሺ1 െ 𝜖ሻ/𝜖ሻ ൅ log ሺ𝑐 െ 1ሻ 
             Set 𝑤௜

௧ାଵ ൌ  𝑤௜
௧ exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ for all i 

             Normalize 𝑤௜
௧ାଵ 

      end 
end 
Output: Hypothesis 𝐻ሺ𝑥ሻ ൌ argmax

௬∈௒
∑ 𝛼௧ሾℎ௧ሺ𝑥ሻ ൌ 𝑦ሿ்

௧ୀଵ  

 
Algorithm2: ValidBoost 

Input: Dataset x, consisting of N objects ൻ𝑋ଵ⋯𝑋ே⟩ ∈ 𝑋 with labels 
ൻ𝑦ଵ⋯𝑦ே⟩ ∈ 𝑌 ൌ ሼ1⋯ 𝑐ሽ 
Input: Weak learning algorithm WeakLearn 
Input: Number of iterations T 
Input: Number of folds k 

Initialize: Weight vector 𝑤௜
ଵ ൌ  

ଵ

ே
 for 𝑖 ൌ 1⋯  𝑁 

for t = 1 to T do 
      Split 𝑥 into 𝑘 sets of equal size and with equal prior probabilities, 
𝑋ଵ⋯  𝑋௞ 
      for f =1 to k do 
            Set the validation set 𝑥௩ to 𝑥௙ 
            Set the training set 𝑥௧ to ⋃ 𝑥௜௜ஷ௙  
            Call Weaklearn on 𝑥௧, providing it with weights 𝑤௜

௧ for ሼ𝑖: 𝑥௜ ∈
𝑥௧ሽ 
            Get back hypothesis ℎ௧௙: 𝑋 → 𝑌 
            Compute 𝜖௩ ൌ  ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫ೡሽ  
            Compute 𝜖௧ ൌ  ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫೟ሽ  
            Set 𝜖 ൌ   ሺ𝜖௩ ൅ 𝜖௧ሻ 2⁄  

            if 𝜖 ൐ 1 െ
ଵ

௖
 then 

                    Set 𝛼௧௙ ൌ 0 
                    Set 𝑤௜

௧ାଵ ൌ  𝑤௜
௧ for all i 

            else  
                 Compute 𝛼௧௙ ൌ logሺሺ1 െ 𝜖ሻ/𝜖ሻ ൅ log ሺ𝑐 െ 1ሻ 
                 Set 𝑤௜

௧ାଵ ൌ  𝑤௜
௧ exp ሺ𝛼௧௙ሾℎ௧௙ሺ𝑥௜ሻ ് 𝑦௜ሿሻ for all i 

                 Normalize 𝑤௜
௧ାଵ 

            end 
      end 
end 
Output: Hypothesis 𝐻ሺ𝑥ሻ ൌ argmax

௬∈௒
∑ ∑ 𝛼௧௙ሾℎ௧௙ሺ𝑥ሻ ൌ 𝑦ሿ்

௧ୀଵ
௞
௙ୀଵ  

 
Algorithm3: Cross-Validated AdaBoost 



first method is to introduce a new regularization weight 
parameter; another method is to stop early, which can be used to 
stopped repetitive branching process. Also, in this study, cross-
validation is described as a simple solution to get better 
performance. It also suggests that in order to minimize 
overfitting, the data set should be re-sampled every iteration into 
the training and validation collections. 

As stated in paper [15], the root of overfitting in Adaboost 
arises from the fact that Adaboost is a repetitive method that 
wants to reduce the error of classification, and one of reasons of 
overfitting is that the base learners are not sufficiently weak. In 
Adaboost, the important key issues are selection and integration 
of classifiers. The goal of each classifier is to reduce the amount 
of composition of bias and variance. The ensemble methods do 
this well, and combine a high-bias classifier with low-bias 
classifier and a high-variance classifier with a low-variance 
classifier. In this thesis, the author makes several adjustments on 
Adaboost and examines the effect of each on the classification 
efficiency, and its proposed changes improve classifiers 
efficiency when training data is very noisy. 

In paper [19] that outcomes of [15], It is states that Adaboost 
is an iterative algorithm that quickly rises high performance by 
focusing on objects that are hardly classified. And because of 
that, with noisy data set, it is strongly inclined to overfitting. It 
is also stated that it is possible to avoid overfitting by using 
validation dataset obtained from the same noisy training dataset. 
In this paper, the ValidBoost algorithm is introduced, which is 
an Adaboost algorithm that uses validation dataset. ValidBoost's 
performance is the same as the performance of Adaboost when 
dataset has no noise, but It has been improved Adaboost 
performance with noisy data. The validBoost algorithm is less 
likely to overfit than Adaboost algorithm. 

So far, several methods have been proposed to prevent 
Adaboost overfitting [20]. 

The author of paper [4] said one of the major challenges in 
training deep neural network is prevention of overfitting. Many 
techniques have been proposed to reduce overfitting without to 
need large amount of training data, such as enhancing and 
reinforcement data or new settings like Dropout. In this paper, a 
new regulation called Decov has been proposed that 
significantly reduces overfitting. Decov can be used in both one 
layer or multilayer of neural network. Decov does not need 
supervision, so it can be added to any activation set. In this paper, 
Decov is used for completely connected layers and affects all the 
layered parameters that are used. Decov reduces overfitting by 
the difference between training accuracy and test accuracy. 
Decov Acts like a regulator, and performance of algorithm with 
decov is usually better than without Decov or Dropout. 

The purpose of paper [10] is to present the concept drift, and 
also is a new learning algorithm that used to deal with noisy data 
and data that changes the samples and their performance 
(concept drift). The subject matter is that a characteristic of the 
flow data is their variability, and this causes some instances that 
enter the system be noisy, or caused deviations in other samples. 
Therefore, in the proposed algorithm, a factor called confidence 
level specified that each classifier which its confidence level is 
less than the threshold is eliminated from the making decision in 
ensemble algorithm. This threshold is also proven that should 

not be static and should be dynamic. Therefore, there is an 
adjustment factor in the algorithm that if the result of 
classification of the algorithm is the same with one classifier or 
without that classifier, and the threshold is higher than zero, then 
the threshold would be lowered to the size of the adjustment 
factor, and if the results are not the same and the threshold is less 
than one, then we increase the threshold as much as the decision 
factor. Algoritm4. 

 

In this paper, we introduce a factor called the Equalized Loss 
of Accuracy (ELA), which helps us to examine whether the 
performance of the algorithm on noisy data is related to actual 
robustness of algorithm, or only because of the differences in 
initial predictive accuracies. 

𝐸𝐿𝐴௫% ൌ
ሺ100 െ  𝐴𝐶𝐶௫%ሻ
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IV. PROPOSED METHOD 

The proposed method is integrated the ValidBoost method 
with a dynamic threshold. The basic of this method is the 
ValidBoost algorithm, with the difference that each time the base 
classifier error rate is compared with a confidence level, if the 
error exceeds this level, a new holdout sampling of the 
substituted training data is performed.  

It replaces the previous training data, but if the error rate of 
the underlying class is lower than the confidence level, the 
confidence level will be replaced by the error rate of the previous 
step, and go to next iteration. 

This algorithm will also be run n times. Each execution time 
the maximum number of classifier in the algorithm will be n. At 
each run, if the algorithm error rate exceeds a threshold, the 
training data is re-selected by bootstrap sampling. And if lower, 
the threshold is lowered by the adjustment factor. The algorithm 
is executed in the next loop with the number of new iterations. 
The proposed algorithm pseudocode is visible in Algorithm 5. 

Input: ensemble ෡ , abstaining threshold 𝜃 ∈ ሾ01ሿ, adjustment factor 
𝑠 ∈ ሾ01ሿ 
𝜃 ←initialize threshold 
L ←size of the ensemble 
While end of stream = FALSE do 
      Obtain new instance x from the stream 
      for 𝑙 ← 1 ; 𝑙 ൑ 𝐿; 𝑙 ൅ ൅ do 
            Obtain classifier support 𝐹೗

ሺ𝑥ሻ for each class 
             if max௝∈ெ𝐹೗

ሺ𝑥𝑗ሻ ൏ 𝜃 then 
                   ୪ abstains from the decision 
             else 
                  ୪ participates in voting 
      z ← result of non-abstaining classifiers voting       
      Obtain lable y of object x 
      if z==y then then 
            𝜃 ← 𝜃 െ s    ሺif 𝜃 ൐ 0ሻ 
      else 
           𝜃 ← 𝜃 െ s    ሺif 𝜃 ൐ 0ሻ 
__________________________________________________________ 
Algorthm4: Proposed general framework for dynamic abstaining 

online ensembles. 



 

V. EXPERIMENTAL 

The datasets used in our experiment selected from the UCI 
Machine Learning Repository site and the Kaggle site. 
Information on this dataset given in Table 1. 

TABLE 2: DataSet information 

 dataset #instance #feathers #class balanced drift-
noise 

1 opticaldigits 947 1024 10 balanced  

2 abalone 4177 8 29 imbalanced  

3 electricity 45312 8 2 balanced yes 

4 default-of-
credit-card-

clients 

30000 24 2 imbalanced  

 

The proposed algorithm implemented on four different 
datasets, multiclass or binary, balanced or imbalanced. For 
comparison, the zero_one_loss criterion, a common 
measurement in classification learning. The zero_one_loss is a 
common measurement in classification learning, which means 
that the predictor response is incorrect or false. Zero means that 
the prediction is correct, and one means that a mistake occurs 
during the classification. It is better that this measurement is 
closer to zero. Zero_one_loss measurement is similar to the 
mean squared error regression. 

As you can see from the results of the implementation of 
these three algorithms on the different datasets in Figures one to 
three, the performance of the proposed method is better than that 
of Adabost and ValidBust. This dataset does not include noise 
data. 

 

 

Figure 1: Comparing AdaBoost, ValidBoost and Proposed Algorithm, 
Dataset: OpticalDigits 
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Input: Dataset x, consisting of N objects ൻ𝑋ଵ⋯𝑋ே⟩ ∈ 𝑋 with labels 
ൻ𝑦ଵ⋯𝑦ே⟩ ∈ 𝑌 ൌ ሼ1⋯ 𝑐ሽ 
Input: Weak learning algorithm WeakLearn 
Input: Number of iterations T 
Input: 𝑎  𝜃 ∈ ሾ01ሿ, adjustment factor 𝑠 ∈ ሾ01ሿ 
Initialize: Weight vector 𝑤௜

ଵ ൌ  
ଵ

ே
 for 𝑖 ൌ 1⋯  𝑁 

𝜃 ←initialize threshold 
for i = 1 to n do 
T = i 

𝑎 ←confidence level 
for t = 1 to T do 

      Set  ൌ  
୪୭୥ ௧

୪୭୥ ்
 

      Split 𝑥 into 𝑥௩ of size 𝑁
2ൗ  and 𝑥௧ 

      Call Weaklearn on 𝑥௧, providing it with weights 𝑤௜
௧ for  

ሼ𝑖: 𝑥௜ ∈ 𝑥௧ሽ 
      Get back hypothesis ℎ௧: 𝑋 → 𝑌 
      Compute 𝜖௩ ൌ  ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫ೡሽ  
      Compute 𝜖௧ ൌ  ∑ 𝑤௜

௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሼ௜: ௫೔∈௫೟ሽ  
      Set 𝜖 ൌ   𝜖௩ ൅ ሺ1 െ ሻ𝜖௧ 

      if 𝜖 ൐ 1 െ
ଵ

௖
 then 

             Set 𝛼௧ ൌ 0 
             Set 𝑤௜

௧ାଵ ൌ  𝑤௜
௧ 

      else  
             Compute 𝛼௧ ൌ logሺሺ1 െ 𝜖ሻ/𝜖ሻ ൅ log ሺ𝑐 െ 1ሻ 
             Set 𝑤௜

௧ାଵ ൌ  𝑤௜
௧ exp ሺ𝛼௧ሾℎ௧ሺ𝑥௜ሻ ് 𝑦௜ሿሻ for all i 

             Normalize 𝑤௜
௧ାଵ 

      end 
      if e < a then then 
            a=e 

            else 
                  𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝ሺ𝑥ሻ 

 
end 
Output: Hypothesis 𝐻ሺ𝑥ሻ ൌ argmax

௬∈௒
∑ 𝛼௧ሾℎ௧ሺ𝑥ሻ ൌ 𝑦ሿ்

௧ୀଵ  

Compute Error = zero_one_loss () 
if Error > 𝜃 then then 
             𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝ሺ𝑥ሻ 
            𝜃 = Error  
else 
            𝜃 = 𝜃 - s       
 

Algorithm5: Proposed Algorithm 



 

Figure 2: Comparing AdaBoost, ValidBoost and Proposed Algorithm, 
Dataset: Abalone 

 

 

Figure 3: Comparing AdaBoost, ValidBoost and Proposed Algorithm, 
Dataset: Default-of-credit-card-clients 

 

Figure 4: Comparing AdaBoost, ValidBoost and Proposed Algorithm, 
Dataset: Electricity 

 

The Electricity dataset is a binary balanced data set with 
noisy data. The Adaboost algorithm is very sensitive to noise 
data and suffering from overfitting. As you can see in the 
Adaboost algorithm, the error rate of the training data 
significantly reduced but the error rate of test data did not 
decrease; it means that the algorithm on the training data is much 
better than the test data. It is the concept of overfitting that occurs 
because of noisy data, and the algorithm starts to memorize the 
model of noisy data rather than learning. As you can see in Fig. 
5, the proposed algorithm slightly improves the Adaboost 
overfitting problem and performs better than ValidBoost. 

 

VI. CONCLUSION 

In this paper, we studied various verions of Adaboost 
algorithm. Adaboost tries to train a sequence of classfiers where 
each new classifier is more focused on those instances that have 
been misclassified by the preceding classifiers. Therefore, if the 
data samples are corrupted with noise, AdaBoost might lead to 
overfitted results. To tackle this problem, Dirk introduced 
ValidBoost [15]. We made some minor modifications in 
ValidBoost by introducing a dynamic threshold in order to 
control the reduce even more the error rate of the algorithm. 
Experimental simulations  show that our proposed algorithm 
performs better than both ValidBoost and AdaBoost in terms of 
error rates and is less sensitive to noise than AdaBoost. 
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