
EasyChair Preprint

№ 826

Induction in Saturation-Based Proof Search

Giles Reger and Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 12, 2019

Induction in Saturation-Based Proof Search ?

Giles Reger1 and Andrei Voronkov1,2

1 University of Manchester, Manchester, UK
2 EasyChair

Abstract. Many applications of theorem proving, for example program
verification and analysis, require first-order reasoning with both quanti-
fiers and theories such as arithmetic and datatypes. There is no complete
procedure for reasoning in such theories but the state-of-the-art in auto-
mated theorem proving is still able to reason effectively with real-world
problems from this rich domain. In this paper we introduce a missing
part of the puzzle: automated induction inside a saturation-based theo-
rem prover. Our goal is to incorporate lightweight automated induction
in a way that complements the saturation-based approach, allowing us to
solve problems requiring a combination of first-order reasoning, theory
reasoning, and inductive reasoning. We implement a number of tech-
niques and heuristics and evaluate them within the Vampire theorem
prover. Our results show that these new techniques enjoy practical suc-
cess on real-world problems.

1 Introduction

Saturation-based proof search has been the leading technology in automated the-
orem proving for first-order logic for some time. The core idea of this approach
is to saturate a set of clauses (including the negated goal) with respect to some
inference system with the aim of deriving a contradiction and concluding that
the goal holds. Over the last few years this technology has been extended to
reason with both quantifiers, and theories such as arithmetic and term algebras
(also known as algebraic, recursive or inductive datatypes), making it highly
applicable in areas such as program analysis and verification, which were previ-
ously the sole domain of SMT solvers. However, so far little has been done to
extend saturation-based proof search with automated induction. Most attempts
to date have focussed on using saturation-based methods to discharge subgoals
once an induction axiom has been selected.

The aim of this work is to extend saturation-based proof search with lightweight
methods for automated induction where those techniques are integrated directly
into proof search i.e. they do not rely on some external procedure to produce
subgoals. We achieve this by the introduction of new inference rules captur-
ing inductive steps and new proof search heuristics to guide their application.

? This work was supported by EPSRC Grant EP/P03408X/1. Andrei Voronkov was
also partially supported by ERC Starting Grant 2014 SYMCAR 639270 and the
Wallenberg Academy Fellowship 2014 – TheProSE.

Our approach is based on the research hypothesis that many problems requiring
induction only require relatively simple applications of induction.

Example 1. As an introductory example, consider the problem of proving the
commutativity of (∀x∀y)plus(x, y) ≈ plus(y, x), where x and y range over natural
numbers. We now briefly described how this approach will handle this problem.

When we Skolemise its negation, we obtain the clause plus(σ0, σ1) 6≈ plus(σ1, σ0).
In this paper, we will denote by σi fresh Skolem constants introduced by con-
verting formulas to clausal form.

Our approach will immediately apply induction to σ0 in the negated conjec-
ture by resolving this clause with the (clausal form of the) induction axiomplus(zero, σ1) ≈ plus(σ1, zero)∧

(∀z)
(
plus(z, σ1) ≈ plus(σ1, z)→
plus(succ(z), σ1) ≈ plus(σ1, succ(z))

)→ (∀x)plus(x, σ1) ≈ plus(σ1, x)

to produce the following subgoals:

plus(zero, σ1) 6≈ plus(σ1, zero)∨ plus(succ(σ2), σ1) 6≈ plus(σ1, succ(σ2))
plus(zero, σ1) 6≈ plus(σ1, zero)∨ plus(σ1, σ2) ≈ plus(σ2, σ1)

(1)

Clause splitting is then used to split the search space into two parts to be con-
sidered separately. This splitting is important to our approach and can be used
in any saturation theorem prover implementing some version of it, for example
using splitting with backtracking as in SPASS [23] or the AVATAR architecture
as in Vampire [21]. The first part contains plus(zero, σ1) 6≈ plus(σ1, zero) and is
refuted by deriving plus(σ1, zero) 6≈ σ1 using the definition of plus and applying
a second induction step to σ1 in this clause. By resolving with a similar induc-
tion axiom to before, the following clauses are produced and are refuted via the
definition of plus and the injectivity of datatype constructors.

While inductive reasoning in this example may seem to be the same as in al-
most any other inductive theorem prover, there is an essential difference: instead
of reducing goals to subgoals using induction and trying to prove these subgoals
using theory reasoning or again induction, we simply consider induction as an
additional inference rule adding new formulas to the search space. In a way,
every clause generated during the proof search becomes a potential target for
applying induction and induction becomes integrated in the saturation process.

zero 6≈ plus(zero, zero)∨ succ(σ3) 6≈ plus(succ(σ3), zero)
zero 6≈ plus(zero, zero)∨ plus(σ3, zero) ≈ σ3

The second part of the clause splitting then contains the other half of the clauses
given above. Superposition is then applied to these clauses and the axioms of
plus to derive

succ(plus(σ1, σ2)) 6≈ plus(σ1, succ(σ2))

and a third induction step is applied to this clause on σ1. The resulting subgoals
can again be refuted via the definition of plus and the injectivity of datatype
constructors.

2

In this example there were three applications of induction to ground unit
clauses in the search space, however our implementation performs 5 induction
steps with 2 being unnecessary for the proof. This is typical in saturation-based
proof search where many irrelevant consequences are often derived. This is an
important observation; our general approach is to derive consequences (inductive
or otherwise) in a semi-guided fashion, meaning that we may make many unnec-
essary induction steps. However, this is the philosophy behind saturation-based
approaches.

During proof search for this example it was necessary to (i) decide which
clauses to apply induction to, (ii) decide which term within that clause to apply
induction to, and (iii) decide how to apply induction. We address issues (ii) and
(iii) in this paper, whilst relying on the clause selection techniques of saturation-
based theorem provers for (i). We begin in Section 2 by introducing the necessary
preliminary definitions for the work. In Section 3 we address (iii), how we apply
induction, through the introduction of a set of new inference rules. In Section 4
we consider (ii) through a number of heuristics for selecting goals for induction.
Then in Section 5 we show how standard clause splitting techniques can be used
in our induction proofs (without any additional work) for case splitting. Section 6
describes implementation and experimental evaluation. We then consider related
work in Section 7 before concluding in Section 8.

2 Preliminaries

Multi-Sorted First-Order Logic. We consider standard multi-sorted first-order
predicate logic with equality. We allow all standard boolean connectives and
quantifiers in the language. Throughout this paper, we denote terms by s, t,
variables by x, y, z, constants by a, and function symbols by f , all possibly with
indices. We consider equality ≈ as part of the language, that is, equality is not
a symbol. For simplicity, we write s 6≈ t for the formula ¬(s ≈ t).

An atom is an equality or a predicate applied to a list of terms. A literal is
an atom A or its negation ¬A. Literals that are atoms are called positive, while
literals of the form ¬A are negative. If L = ¬A is a literal we write ¬L for the
literal A. A clause is a disjunction of literals L1 ∨ . . . ∨ Ln, where n ≥ 0. When
n = 0, we will speak of the empty clause, denoted by �. We denote atoms by A,
literals by L, clauses by C, and formulas by F , all possibly with indices.

By an expression E we mean a term, atom, literal, or clause. We write E[t]
to mean an expression E with a particular occurrence of a term t and then E[s]
for that expression with the particular occurrence of t replaced by term s.

The free variables of a formula are those not bound by a quantifier. Let F be
a formula with free variables x̄, then ∀F denotes the formula (∀x̄)F . A formula
is called closed if it has no free variables. A formula, literal or term is called
ground if it has no occurrences of variables. Closed formulas can be clausified
(transformed into a set of clauses) via standard techniques (e.g. [12] and our
recent work in [14]). We write clausify(F) for the set of clauses obtained from F
by clausification.

3

A multi-sorted signature is a finite set of symbols and a finite set of sorts
with the accompanying function srt providing sorts for the symbols.

The Theory of Finite Term Algebras. In this paper we consider induction for
finite term algebras, also known as as algebraic, inductive, or recursive datatypes.
A definition of the first-order theory of term algebras over a finite signature can
be found in e.g. [16] and a description of how saturation-based proof search may
be extended to reason with such structures is given in [8].

Let Σ be a finite set of function symbols containing at least one constant.
Denote by T (Σ) the set of all ground terms built from the symbols in Σ. The
Σ-term algebra is the algebraic structure whose carrier set is T (Σ) and defined
in such a way that every ground term is interpreted by itself (we leave details to
the reader).

We will often consider extensions of term algebras by additional symbols.
Elements of Σ will be called term constructors (or simply just constructors), to
distinguish them from other function symbols. We will differentiate between re-
cursive constructors that are recursive in their arguments and base constructors
that are not. Where we wish to differentiate we may write T (ΣB , ΣR) for base
constructors ΣB and recursive constructors ΣR.

In practice, it can be useful to consider multiple sorts, especially for problems
taken from functional programming. In this setting, each term algebra construc-
tor has a type τ1 × · · · × τn → τ . The requirement that there is at least one
constant should then be replaced by the requirement that for every sort, there
exists a ground term of this sort. We also consider theories, which mix construc-
tor and non-constructor sorts. That is, some sorts contain constructors and some
do not (e.g. arithmetic).

Finally, we associate n destructor (or projection) functions with every con-
structor c of arity n such that each destructor returns one of the arguments of
c. Note, that the behavior of a destructors are unspecified on some terms.

Example 2. We introduce two term algebras. Firstly, that of natural numbers

nat := zero | succ(dec(nat))

and secondly that of integer lists

list := nil | cons(hd(Int), tail(list))

note that this second term algebra relies on an inbuilt Integer sort.

Saturation-Based Proof Search. An important concept in this work is that of
saturation with respect to an inference system. Inference systems are used in
the theory of superposition [11] implemented by several leading automated first-
order theorem provers, including Vampire [9] and E [17]. Superposition theorem
provers implement proof-search algorithms in S using so-called saturation al-
gorithms, as follows. Given a set S of formulas, superposition-based theorem
provers try to saturate S with respect to S, that is build a set of formulas that

4

input: Init : set of clauses;

var active, passive, unprocessed : set of clauses; var given, new : clause;
active := ∅; unprocessed := Init ;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;
add new to passive

if passive = ∅ then return satisfiable or unknown
given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed:=infer(given, active); (* generating inferences *)

Fig. 1. Simple Saturation Algorithm.

contains S and is closed under inferences in S. At every step, a saturation algo-
rithm selects an inference of S, applies this inference to S, and adds conclusions
of the inferences to the set S. If at some moment the empty clause � is obtained,
by soundness of S, we can conclude that the input set of clauses is unsatisfiable.
Figure 1 gives a simple saturation algorithm. This algorithm is missing an im-
portant notion of redundancy. We have omitted this as it does not interact with
the elements of proof search we consider here. However, it is core to the im-
plementation in the Vampire theorem prover. It is important to note that the
only way to guide proof search is via how we select clauses and how we perform
inferences on them.

3 Performing Induction

In this section we introduce inference rules for performing induction for term
algebras.

3.1 General Approach We begin by describing our general approach. The
idea is to add inference rules that capture the application of induction to the
selected clause in proof search. These inference rules will be applied during proof
search to selected clauses in the same way as other inference rules such as reso-
lution. We define an induction axiom to be any valid (in the underlyng theory)
formula of the form

formula → (∀x)(L[x]).

For simplicity we assume that this formula is closed, leaving out the general
case due to the lack of space. The idea is to resolve this with a clause ¬L[t]∨C
obtaining formula → C. Again, for simplicity we assume that t is a ground term.
As long as the induction axiom is valid, this approach is always sound. If the
resulting formula is not a clause, it should then be converted to its CNF.

The idea is that L[t] is a (sub)goal we are trying to prove. This is an interest-
ing point. Typically, saturation-based proof search is not goal-oriented (although
one can introduce heuristics that support this) but this approach to induction is
goal-oriented in nature as the conclusion of an induction inference is a subgoals

5

that, if refuted, proves the goal represented by the premise. Also, similar to [6]
by resolving the induction axiom to reduce the goal to subgoals we bypass the
literal selection used in saturation algorithms. This means that, if we would just
add the (clausal form of) the induction axiom to the search space, we would
most likely never use it to resolve against the goal in the same way as above
since the literal L[x] would not necessarily be selected.

Below we consider two different kinds of induction axioms, introducing three
inference rules, parametrised by some term algebra. To formalise the selection
of goals that can be proved by induction we introduce a predicate sel(C,L, t)
that is true if C is clause, L a literal in C and t a term in L. We will call this
predicate induction heuristics since it will be used to decide when induction
should be applied. In this case we will informally say that t is the induction
term and L the induction literal in C.

We will first concentrate on how induction should be performed once an
induction term and literal have been selected, and then discuss various choices
for selection.

3.2 Structural Induction We begin by motivating the inference rule by the
simple example of inductively proving that the length of a list is non-negative.

Example 3 (Structural Induction on Lists). Consider the following conjecture
(∀x : list)(len(x) ≥ 0) for integer lists (defined in Example 2) given the axioms
len(nil) ≈ 0 and (∀x : Int , y : list)(len(cons(x, y)) ≈ 1 + len(y)) for the len
function. To prove this conjecture we must first negate it to get ¬(len(σ) ≥ 0)
and then introduce the induction axiom

(len(nil) ≥ 0 ∧ (∀x, y : len(x) ≥ 0→ len(cons(y, x)) ≥ 0))→ (∀x)(len(x) ≥ 0)

which is then resolved against ¬(len(σ) ≥ 0) to give, after conversion to CNF,
two clauses

¬(len(nil) ≥ 0) ∨ len(σ1) ≥ 0
¬(len(nil) ≥ 0) ∨ ¬(len(cons(σ2, σ1)) ≥ 0),

which can be refuted using the axioms for len. The question now is what inference
rule is needed for performing the above induction step. To do so, we define the
induction heuristics sel(C,L, t) to hold when L is the only literal in C and t is a
constant of the sort list . This rule effectively results in the following inferences
performed by a saturation theorem prover:

¬A[a]

¬A[nil] ∨A[σ1]
¬A[nil] ∨ ¬A[cons(σ2, σ1)]

where a is a constant, L[a] is ground, srt(a) = list and σ1, σ2 are fresh constants.

3.3 Well-Founded Induction Suppose that x � y is any binary predicate
that is interpreted as a well-founded relation (which is not necessarily an order-
ing). We require both arguments of � to be of the same sort. Then the following
is a valid formula, which represents well-founded induction on this relation:

∀x(¬L[x]→ ∃y(x � y ∧ ¬L[y]))→ ∀xL[x].

6

When we skolemize this formula, we obtain two clauses

¬L[σ1] ∨ L[x]
¬σ1 � y ∨ ¬L[y] ∨ L[x]

We can use the following two equivalent clauses instead:

¬L[σ1]
¬σ1 � y ∨ ¬L[y] ∨ L[x]

(2)

Well-founded induction is the most general form of induction (though in
practice it can only be used when the relation � can be expressed in the first-
order language we are using). We are interested in finding special cases of well-
founded induction for term algebras. There are two obvious candidates for it:
the immediate subterm relation �1 and the subterm relation considered below.

Let us begin with the immediate subterm relation. Note that the relation �
must have both arguments of the same sort, so the corresponding induction rule
will only be useful for term algebras where at least one argument of a constructor
has the same sort as the constructor itself. Fortunately, this is the case for the
three most commonly used inductive data types: natural numbers, lists and trees.

Let us provide a complete axiomatisation of the immediate subterm relation
�i first for natural numbers and lists:

¬zero �1 x
succ(x) �1 y ↔ x ≈ y

¬nil �1 x
cons(x, y) �1 z ↔ y ≈ z

The subterm relation is generally not axiomatisable. However, this is not a
problem in general, since we can use as an incomplete axiomatisation of the
subterm relation any set of formulas which are true on this relation (though this
restricts what can be proved about the relation). If we then prove anything using
this set of formulas, then our proof will be correct for the subterm relation too,
which makes the corresponding induction rule valid too.

We can generalise the immediate subterm and subterm relation also to trees
and some other (but not all!) inductively defined types. We do not include general
definitions here as they become very involved with multiple sorts and mutually
recursive type definitions.

3.4 Inductive Strengthening We now consider a different form of induction
axiom (inspired by [15]).

Example 4. Given the negated conjecture ¬(len(σ1) ≥ 0) given in Example 3
we consider a different way in which to inductively demonstrate L[x] and thus
refute this claim. The idea here is to argue that if there does not exist a smallest
list of non-negative length then the length of all lists is non-negative. This can
be captured in the induction axiom

¬(∃x)

(
¬(len(x) ≥ 0)∧
(∀y)(subtermlist(x, y)→ len(tail(y)) ≥ 0)

)
→ (∀z)(len(z) ≥ 0)

7

where subtermlist(x, y) is true if y is a subterm of x of list sort. However, as
argued in [8], the subterm relation needs to be axiomatised and these axioms
(which include transitivity) can have a large negative impact on the search space.
Therefore, we can consider two alternative inductive axioms. The first is the weak
form where we consider only direct subterms of x as follows.

¬(∃x)

(
¬(len(x) ≥ 0)∧
(x ≈ cons(hd(x), tail(x))→ len(tail(x)) ≥ 0)

)
→ (∀y)(len(y) ≥ 0)

This is clausified as

len(x) ≥ 0 ∨ ¬(len(σ2) ≥ 0)
len(x) ≥ 0 ∨ σ2 6≈ cons(hd(σ1), tail(σ2)) ∨ len(tail(σ2)) ≥ 0

which can be resolved against ¬(len(σ1) ≥ 0) as before.
The second (taken from [8]) is where we represent the subterm relation in a

way that is more friendly to saturation-based theorem provers i.e. we introduce
a fresh predicate less and then add axioms such that it holds for exactly those
terms smaller than the existential witness x. This can be written as follows.

¬(∃x)

 (x ≈ cons(hd(x), tail(x))→ less(tail(x)))∧
(∀y)(less(cons(hd(y), tail(y)))→ less(tail(y)))∧
(∀z)(less(z)→ ¬(len(z) ≥ 0))

→ (∀y)(len(y) ≥ 0)

Again, the specific approach taken in this example can be generalised to the
arbitrary term algebra ta = T (ΣB ∪ΣR). The existential part existsta(L) of the
general induction axiom can be given as

(∃x)

¬L[x]
∧

con(...,di,...)∈ΣR

(x ≈ con(. . . , di(x), . . .)→ L[x])


for the first approach and as

(∃x)

∧con(...,di,...)∈ΣR

∧
j∈rec(con) x ≈ con(. . . , di(x), . . .)→ less(dj(x)) ∧

(∀y)(
∧

con(...,di,...)∈ΣR

∧
j∈rec(con) less(con(. . . , di(x), . . .))→ less(dj(y))) ∧

(∀z)(less(z)→ ¬L[z])


for the second approach. The general induction rule then becomes

L[t] ∨ C
clausify(existsta(¬L) ∨ C)

for ground literal L[t], clause C and term t, where srt(t) = ta and sel(L[t] ∨
C,L[t], t).

One could consider an optimisation where this approach is applied directly to
the input (as is done in [15]). However, this would introduce induction axioms
too early in proof search i.e. it goes against the saturation-based philosophy.
One could also consider reusing Skolem constants instead of introducing new
ones where t in the above rule is already a Skolem constant. However, this could
only be done for each Skolem constant at most once.

8

Approach One

L[t] ∨ C
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ ¬L[σ4] ∨ ¬L[σ2]
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ ¬L[σ4] ∨ ¬L[σ6]
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ ¬L[σ7] ∨ ¬L[σ2]
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ ¬L[σ7] ∨ ¬L[σ6]
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ L[black(σ3, σ7, σ4)] ∨ ¬L[σ2]
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ L[black(σ3, σ7, σ4)] ∨ ¬L[σ6]
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ L[red(σ5, σ2, σ6)]] ∨ ¬L[σ7]
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ L[red(σ5, σ2, σ6)] ∨ ¬L[σ4]
C ∨ L[empty] ∨ L[leaf(σ1)] ∨ L[black(σ3, σ7, σ4)] ∨ L[red(σ5, σ2, σ6)]

Approach Two

L[t] ∨ C
C ∨ red(rval(σ1), rleft(σ1), rright(σ1)) 6≈ σ1 ∨ ¬L[rleft(σ1)]
C ∨ red(rval(σ1), rleft(σ1), rright(σ1)) 6≈ σ1 ∨ ¬L[rright(σ1)]
C ∨ black(bval(σ1), bleft(σ1), bright(σ1)) 6≈ σ1 ∨ ¬L[bleft(σ1)]
C ∨ black(bval(σ1), bleft(σ1), bright(σ1)) 6≈ σ1 ∨ ¬L[bright(σ1)]
C ∨ L[σ1]

Approach Three

L[t] ∨ C
C ∨ L[σ1]
C ∨ red(rval(σ1), rleft(σ1), rright(σ1) 6≈ σ1 ∨ less(rleft(σ1))
C ∨ red(rval(σ1), rleft(σ1), rright(σ1) 6≈ σ1 ∨ less(rright(σ1))
C ∨ black(bval(σ1), bleft(σ1), bright(σ1) 6≈ σ1 ∨ less(bleft(σ1))
C ∨ black(bval(σ1), bleft(σ1), bright(σ1) 6≈ σ1 ∨ less(bright(σ1))
C ∨ ¬less(x) ∨ ¬L[x]

Table 1. Illustrating instantiating the induction inference schemas for the rbtree term
algebra.

3.5 Comparing the Approaches with an Example To illustrate the dif-
ferences in the clauses produced by the above three approaches we instantiate
each inference rule schema by a more complex term algebra defined as

rbtree := empty | leaf(lval(Int)) | red(rval(Int , rleft(rbtree), rright(rbtree))
| black(bval(Int), bleft(rbtree), bright(rbtree))

This covers all the important cases from above (i) non-zero arity base construc-
tors, and (ii) multiple base and multiple recursive constructors. Table 1 gives
the introduced inference rules instantiated with ta = rbtree. Notice how the
structural induction rule, in this case introduces 7 new Skolem constants and
9 clauses (although this could be slightly optimised here) whilst the inductive
strengthening approaches introduce one Skolem constant and fewer clauses.

4 Selecting Where to Apply Induction

We now consider how to define various induction heuristics.

9

4.1 Goal-Directed Search If we consider our introductory example (Ex-
ample 1) of proving the commutativity of addition then we observe that we
(usefully) applied induction three times. The first time was directly to the goal
and the second two times were to unit clauses derived directly from the result of
this first induction. We hypothesise that this is a typical scenario and introduce
heuristics that represents for this common case. An important observation here
is that an implicative universal goal becomes a set of unit ground clauses once
negated.

Unit clauses. A unit clause represents a single goal or subgoal that, if refuted,
will lead to a final proof. Conversely, applying the above induction inference
rules to non-unit clauses will lead to applications of induction that may not be
as general as needed. This selection can be defined as follows for some literal
L[t] and term t.

selU (L[t], L[t], t)

Negative literals. Typically, goal statements are positive and therefore proof
search is attempting to derive a contradiction from a negative statement. Ap-
plying induction to a negative statement leads to a mixture of positive and
negative conclusions. As we saw in the introductory example, it is common to
apply further induction to the negative conclusions. This selection can be defined
as follows for clause C, atom A and term t.

selU (C ∨ ¬A[t],¬A[t], t)

However, it is easy to see cases where this is too restrictive. For example, the
goal from Example 3 could have been rewritten as (∀x)(¬(len(x) < 0)) and the
negated goal on which induction should be performed would have been positive.

Constants. Given a purely universal goal, the terms of interest will be Skolem
constants (whether this Skolemisation occurred within the solver or not) and
terms introduced by induction for repeated induction or also typically Skolem
constants. Therefore, to restrict application of induction to this special case,
we can restrict it to constants only. This selection can be defined as follows for
clause C, literal L and constant a.

selC(C ∨ L[a], L[a], a)

Special symbols. The goal will typically contain the symbols on which induction
should be performed. Additionally, further induction steps are often performed
on the Skolem constants introduced by a previous induction. We define a selec-
tion predicate parameterised by a set of symbols α as follows for clause C, literal
L and term t.

selα(C ∨ L[t], L[t], t)⇔ (t = f(t1, . . . , tn)→ f ∈ α) ∧ (t = a→ a ∈ α)

and define the functions selG and selI for sets of goal symbols G and induction
Skolem constants G.

10

The sel function is then defined as any conjunction of zero or more of the above
with the trivial selection function that is true on all inputs where t is of term
algebra sort.

4.2 Inferring Goal Clause(s) One issue with the above heuristics is that
we may not have an explicit goal in our input problem. Indeed, SMT-LIB [1] has
no syntax for indicating the goal (unlike TPTP [20]). To address this we define a
notion of goal symbol that is independent of the notion of an explicit goal being
given.

Given a set of input formulas F1, . . . , Fn and a set G containing zero or more
formulas Fi marked as goal formulas, a goal symbol is a symbol such that

– It appears in a formula F ∈ G, or
– It is a Skolem constant introduced in the clausification of some F ∈ G, or
– It appears in at most limit formulas, or
– It is a Skolem constant introduced by the Skolemisation of some formula Fi

of the form ∃x.F

where limit is a parameter to the process. In the case where this is a single
goal formula we would expect limit to be 1. However, the input may have been
subject to some additional preprocessing meaning that the goal is represented
by a few clauses in the input. The last point is because many goals will take the
form of negated universal statements; this is also how formulas for induction are
identified in [15].

Once all such goal symbols have been identified, the set G is extended to
include all formulas containing a goal symbol. This is done as G typically plays
another role in proof search as clauses derived from formulas in G may be pri-
oritised in clause selection, providing some heuristic goal-directionality.

5 Case Splitting for Free

An important part of inductive proofs is typically the case splitting between the
base case and the inductive step. In this section we describe a clause splitting
approach (implemented in Vampire as AVATAR [13, 21]) that achieves this.

We briefly describe the ground part of the AVATAR framework for clause
splitting as case splitting for induction only requires the ground part. The general
idea is that given a set of clauses S and a ground clause L1∨L2 we can consider
the two sub-problems S ∪ {L1} and S ∪ {L2} independently.

Let name be a function from ground literals to labels that is injective up to
variable renaming and symmetry of equality. Let C ← A be a labelled clause
where A is a set of labels. We can lift an inference system on clauses to one on
labelled clauses where all conclusions take the union of the labels in premises. The
previous rules for induction can be extended such that the consequent clauses
take the labels of the premise clause.

Figure 2 shows how the simple saturation algorithm from Section 2 can be
extended to perform ground clause splitting. It assumes a SAT procedure that
we add clauses of labels to and then request the difference between a new model
and the previous model in terms of added and removed labels.

11

input: Init : set of clauses;

var active, passive, unprocessed : set of clauses; var given, new : clause;
active := ∅; passive := ∅; unprocessed := Init ;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;
if new = �← A then add ¬A to SAT;
if new is ground then add label(new) to SAT;
else add new to passive;

if passive = ∅ then return satisfiable or unknown
(add labels, remove labels) = new model(SAT); (* compute new model *)
active:= {C ← L ∈ active | L ∩ remove labels = ∅};
passive:= {C ← L ∈ passive | L ∩ remove labels = ∅};
passive:=passive ∪ {retrieve(l)← l | l ∈ add labels};
given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed:=infer(given, active); (* generating inferences *)

Fig. 2. Simple Saturation Algorithm with Ground Clause Splitting.

To understand why this is very useful consider the conclusions of the inference
rules given in Table 1. These clauses are all ground and multi-literal i.e. they
capture multiple cases. As an example, when proving the conjecture height(t) ≥ 0
(for a suitable axiomatisation of height) our implementation considers and refutes
between 6 and 8 different different cases depending on which form of induction
rule is used.

6 Experimental Evaluation

In this section we describe the implementation and evaluation of the techniques
described in this paper.

Implementation. We extended the Vampire [9] theorem prover with additional
options to capture the techniques described in the previous sections. Table 2
gives an overview of these new options. The sik option captures the different ap-
proaches introduced in Section 3. The indm option limits the depth of induction.
The remaining options capture the choices made in Section 4. Our implementa-
tion of the induction inference rules ensures that we never instantiate the same
induction axiom more than once and that proof search when there are no term
algebra sorts in the problem is unaffected. Furthermore, this implementation is
fully compatible with all other proof search options and heuristics in Vampire.
Our implementation is available online3.

Experimental Setup. We use two sets of benchmarks from SMT-LIB from the
UFDT and UFDTLIA logics where UF stands for Uninterpreted Functions, DT
stands for DataTypes and LIA stands for Linear Integer Arithmetic; we do

3 See https://github.com/vprover/vampire. Currently the functionality is in the
branch infp but will soon be merged into master.

12

Table 2. New options and their values.

Name Values Description

ind none, struct Whether structural induction should be applied or not.
sik 1, 2, 3, all The kind of structural induction to apply. The numbers 1,2,

3 refer to the three kinds introduced in Section 3 and all

applies them all.
indmd n ≥ 0 (0) The maximum depth to which induction is applied where 0

indicates it is unlimited.
indc goal, goal plus,

all

Choices for the selα predicate (see Section 4) where goal

uses goal symbols only, goal plus uses goal and induction
symbols, and all is unrestricted.

indu on, off Whether to include the selU predicate.
indn on, off Whether to include the selN predicate.
gtg on, off Whether goal clauses in the input should be inferred.
gtgl n ≥ 1 (1) The limit of times a symbol should appear in input formulae

to be identified as a goal symbol.

not consider AUFDTLIA as it does not contain problems interesting for induc-
tion. UFDT consists of 4376 problems known not to be satisfiable (we excluded
problems either marked as, or found to be, satisfiable during experiments) and
UFDTLIA consists of 303 problems. Experiments are run on StarExec [19].

6.1 Research Questions In this section we look at two research questions
that naturally arise in our work.

Which options are useful? Given the set of introduced options, we would like
to know which will be useful in general. Vampire is a portfolio solver and would
normally run a series of strategies combining different options. Therefore, any
options able to solve problems uniquely may be useful for a portfolio mode.
Table 3 compares the option values across the SMT-LIB problems. All option
values with the exception of --sik three and non-zero values for indmd solve
some problems uniquely. For each option there is a clear choice for default value.
The fact that non-zero values for indmd were not useful in general suggests that
there was not a problem with an explosion of iterative induction steps. This
is most likely due to the fact that clause selection will favour a breadth-first
exploration of the space. The solved problems did not rely heavily on inferring
goal symbols or selection via special symbols. This suggests that the problems
of interest either had shallow proofs that followed quickly from the input, or
contained few relevant symbols for induction.

What do the proofs look like? We ran Vampire in a portfolio mode using the
additional options -sik one -indm 0 -indc all on the SMT-LIB UFDTLIA
problem set and recorded (i) the number of induction steps appearing in proofs,
and (ii) the maximum depth of these inductions. The results are in Table 4.
In the majority of cases only a few induction steps are used but there are
11 problems where more than 10 inductions are required and the proof of
induction-vmcai2015/leon/heap-goal3.smt2 uses 145 induction steps. As
suggested above, induction is relatively shallow with the maximum depth in
proofs being 6 and most necessary inductions not being nested.

13

Table 3. Comparing option values.

Value Count Unique Value Count Unique Value Count Unique

sik indmd indc

one 3088 20 0 3096 37 all 3069 104
two 3028 3 1 3044 0 goal 2989 7
three 3019 0 2 3051 0 goal plus 2985 1
all 3043 2 3 3048 0

indu indn gtg

on 3095 43 on 3088 50 on 2992 27
off 3053 1 off 3046 8 off 3069 104

Table 4. Statistics from 165 successful problems in UFDTLIA.

Number of inductions in proof Count

0 44
1 82
2 16
3 6
5 2
10-50 7
50-145 4

Max induction depth Count

1 84
2 25
3 4
4 3
6 1

6.2 Comparative Evaluation We compare the new techniques to CVC4
on the SMT-LIB benchmarks in Table 5 running both solvers with and with-
out induction. We currently restrict our attention to CVC4 as this is the only
solver available that runs on these problems and supports induction (Z3 does
not support induction). It is worth noting that CVC4 was reported comparable
to Zipperposition in [4] but has improved considerably in the meantime.

Overall CVC4 solves more problems but Vampire solves 48 problems that
CVC4 (or any other solver) does not. We consider it an impressive result for
a first implementation and believe that Vampire will solve many more previ-
ously unsolved problems when more heuristics, options and induction axioms
are implemented.

It is interesting to note that the majority of problems are solvable without
induction, suggesting the need for better benchmarks. However, we also observe
that Vampire will commonly use induction to solve a problem more quickly
even when induction is not required. This is also a very interesting observation
since normally the addition of new rules other than simplification slows down
saturation theorem provers.

Table 5. Comparative results with CVC4 on SMT-LIB benchmarks.

Logic Size Solvers
CVC4-noi Vampire-noi CVC4 Vampire

UFDT 4376 2270 2226 (2) 2275 (5) 2294 (37)
UFDTLIA 303 69 76 224 (69) 165 (9)

14

7 Related Work

We focus on explicit induction approaches, rather than implicit induction, e.g.
the inductionless induction [3] approach. Within this we identify two areas of
relevant work - the specialised area of inductive theorem proving and the general
approach of extending first-order theorem provers with induction.

Tools that use theorem provers as backends often include induction hypothe-
ses in the input. For example, Dafny was extended to wrap SMT solvers with
an induction layer inserting useful induction hypotheses [10] within Dafny.

There are a number of inductive theorem provers such as ACL2 [7], IsaPlan-
ner [5], Zeno [18], and Hipspec [2]. These have special procedures for deciding
when to apply induction and the main effort is in choosing appropriate points
as the effort required for each application of induction is large. In general, such
solvers are well suited to problems that require complex induction but only re-
quire relatively simple reasoning otherwise. Our focus is the converse case.

There main previous attempt to extend a saturation-based superposition the-
orem prover with induction is in Zipperposition by Cruanes [4]. This approach is
formulated for (generally defined) structural induction over inductive datatypes.
The main difference between this previous work and ours is the way in which
this previous work puts together datatype reasoning, inductive reasoning, and
reasoning by cases using AVATAR, whereas our work keeps all three parts sepa-
rate. As a result, our approach is more general; our definition of induction does
not depend on inductive datatypes and works without AVATAR, so it can be
with little effort added to existing saturation theorem provers. For example, our
generality results in the ability to implement well-founded induction.

Although we do note that Cruanes explores heuristics for where to apply
induction from the broader inductive theorem proving literature that we have
not yet explored.

Finally, we note that the experimental results of [4] have a different focus
from our own as they focus on problems suited for inductive theorem provers
whereas our research (and our experiments) focus on problems requiring a little
bit of reduction and a lot of complex first-order reasoning.

Another approach [22] wraps superposition-based proof search in an extra
process that iteratively explores the space of possible inductions. CVC4 has
been extended with a set of techniques for induction [15]. There rules are similar
to ours but the setting is different as CVC4 is a DPLL(T)-based SMT solver
using quantifier instantiation to handle quantifiers.

8 Conclusion

In this paper we introduce a new method for integrating induction into a saturation-
based theorem prover using superposition. Our approach utilises the clause-
splitting framework for case splitting. Experimental results show that the new
options allow us to solve many problems requiring complex (e.g. nested) induc-
tions.

Acknowledgements. We thank Andrew Reynolds for helping with obtaining
CVC4 results.

15

References

1. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

2. Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Automating
inductive proofs using theory exploration. In Maria Paola Bonacina, editor, Au-
tomated Deduction – CADE-24, pages 392–406, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

3. Hubert Comon. Inductionless induction. In Handbook of Automated Reasoning (in
2 volumes), pages 913–962. 2001.

4. Simon Cruanes. Superposition with structural induction. In Frontiers of Com-
bining Systems - 11th International Symposium, FroCoS 2017, Braśılia, Brazil,
September 27-29, 2017, Proceedings, pages 172–188, 2017.

5. Lucas Dixon and Jacques Fleuriot. Higher order rippling in isaplanner. In In-
ternational Conference on Theorem Proving in Higher Order Logics, pages 83–98.
Springer, 2004.

6. Ashutosh Gupta, Laura Kovacs, Bernhard Kragl, and Andrei Voronkov. Exten-
sional crisis and proving identity. In Franck Cassez and Jean-François Raskin,
editors, 12th International Symposium on Automated Technology for Verification
and Analysis (ATVA), volume 8837 of Lecture Notes in Computer Science, pages
185–200. Springer, 2014.

7. Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

8. Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to terms with
quantified reasoning. SIGPLAN Not., 52(1):260–270, January 2017.

9. Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire.
In Proceedings of CAV, volume 8044 of LNCS, pages 1–35, 2013.

10. K. Rustan M. Leino. Automating induction with an smt solver. In Proceedings of
the 13th International Conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI’12, pages 315–331, Berlin, Heidelberg, 2012. Springer-
Verlag.

11. Robert Nieuwenhuis and Albert Rubio. Paramodulation-Based Theorem Prov-
ing. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 7, pages 371–443. Elsevier Science, 2001.

12. Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal
forms. In Handbook of Automated Reasoning (in 2 volumes), pages 335–367. 2001.

13. Giles Reger, Nikolaj Bjørner, Martin Suda, and Andrei Voronkov. AVATAR mod-
ulo theories. In GCAI 2016. 2nd Global Conference on Artificial Intelligence, vol-
ume 41 of EPiC Series in Computing, pages 39–52. EasyChair, 2016.

14. Giles Reger, Martin Suda, and Andrei Voronkov. New techniques in clausal form
generation. In GCAI 2016. 2nd Global Conference on Artificial Intelligence, vol-
ume 41 of EPiC Series in Computing, pages 11–23. EasyChair, 2016.

15. Andrew Reynolds and Viktor Kuncak. Induction for SMT solvers. In Verification,
Model Checking, and Abstract Interpretation - 16th International Conference, VM-
CAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, pages 80–98, 2015.

16. Tatiana Rybina and Andrei Voronkov. A decision procedure for term algebras with
queues. ACM Transactions on Computational Logic, 2(2):155–181, 2001.

17. Stephan Schulz. E - a brainiac theorem prover. AI Communications, 15(2-3):111–
126, 2002.

16

18. William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: An automated
prover for properties of recursive data structures. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 407–421.
Springer, 2012.

19. Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec, a cross community
logic solving service. https://www.starexec.org, 2012.

20. Geoff Sutcliffe. The TPTP problem library and associated infrastructure. J. Au-
tom. Reasoning, 43(4):337–362, 2009.

21. Andrei Voronkov. AVATAR: The architecture for first-order theorem provers. In
Armin Biere and Roderick Bloem, editors, Computer Aided Verification, volume
8559 of Lecture Notes in Computer Science, pages 696–710. Springer International
Publishing, 2014.

22. Daniel Wand. Superposition: Types and Induction. (Superposition : types et induc-
tion). PhD thesis, Saarland University, Saarbrücken, Germany, 2017.

23. C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 27,
pages 1965–2013. Elsevier Science, 2001.

17

