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Abstract. Let’s define δ(x) = (
∑
q≤x

1
q
− log log x−B), where B ≈ 0.2614972128 is the

Meissel-Mertens constant. The Robin theorem states that δ(x) changes sign infinitely

often. Let’s also define S(x) = θ(x) − x, where θ(x) is the Chebyshev function. A

theorem due to Erhard Schmidt implies that S(x) changes sign infinitely often. Using
the Nicolas theorem, we prove that when the inequalities δ(p) ≤ 0 and S(p) ≥ 0 are

satisfied for a prime p ≥ 127, then the Riemann Hypothesis should be false. However,

we could restate the Mertens second theorem as limn→∞ δ(pn) = 0 where pn is the nth

prime number. In addition, we could modify the well-known formula limn→∞
θ(pn)
pn

= 1

as limn→∞ S(pn) = 0. In this way, this work could mean a new step forward in the

direction for finally solving the Riemann Hypothesis.

1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex
numbers with real part 1

2 [1]. Let Nn = 2× 3× 5× 7× 11× · · · × pn denotes

a primorial number of order n such that pn is the nth prime number. Say
Nicolas(pn) holds provided∏

q|Nn

q

q − 1
> eγ × log logNn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural
logarithm, and q | Nn means the prime q divides to Nn. The importance of
this property is:

Theorem 1.1 [6], [7]. Nicolas(pn) holds for all prime pn > 2 if and only
if the Riemann Hypothesis is true.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

where p ≤ x means all the prime numbers p that are less than or equal to x.
We use the following property of the Chebyshev function:

Theorem 1.2 [9]. For x ≥ 41:

θ(x) = (1 + ε(x))× x
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where − 1
log x < ε(x) < 1

2×log x .

Besides, in the Grönwall paper appears this:

Theorem 1.3 [3].

lim
x→∞

θ(x)

x
= 1.

Let’s define S(x) = θ(x)− x. Nicolas also proves that

Theorem 1.4 [7]. For x ≥ 121:

log log θ(x) ≥ log log x+
S(x)

x× log x
− S(x)2

x2 × log x
.

From the paper of Schmidt, then we can deduce that:

Theorem 1.5 [10]. S(x) changes sign infinitely often.

The famous Mertens paper provides the statement:

Theorem 1.6 [5].

log

∏
q≤x

q

q − 1

 =
∑
q≤x

1

q
+ γ −B − 1

2
×
∑
q>x

1

q2
− 1

3
×
∑
q>x

1

q3
− · · ·

where B ≈ 0.2614972128 is the Meissel-Mertens constant.

Let’s define:

δ(x) =

∑
q≤x

1

q
− log log x−B

 ,

Robin theorem states the following result:

Theorem 1.7 [8]. δ(x) changes sign infinitely often.

In addition, the Mertens second theorem states that:

Theorem 1.8 [5].

lim
x→∞

δ(x) = 0.

Putting all together yields the proof that when the inequalities δ(p) ≤ 0
and S(p) ≥ 0 are satisfied for a prime p ≥ 127, then the Riemann Hypothesis
should be false.
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2 Central Lemma

Lemma 2.1 For a prime p ≥ 127:

S(p)

p
< 1.

Proof By the theorem 1.2, for all prime p ≥ 127:

S(p)

p
=
θ(p)− p

p

=
(1 + ε(p))× p− p

p

=
p× ((1 + ε(p))− 1)

p

= (1 + ε(p)− 1)

= ε(p)

<
1

2× log p

< 1.

3 Main Theorem

Theorem 3.1 If the inequalities δ(p) ≤ 0 and S(p) ≥ 0 are satisfied for a
prime p ≥ 127, then the Riemann Hypothesis should be false.

Proof For a prime p ≥ 127, suppose that simultaneously the inequalities
Nicolas(p), δ(p) ≤ 0 and S(p) ≥ 0 are satisfied. If Nicolas(p) holds, then∏

q≤p

q

q − 1
> eγ × log θ(p).

We apply the logarithm to the both sides of the inequality:

log

∏
q≤p

q

q − 1

 > γ + log log θ(p).

We use that theorem 1.6:

log

∏
q≤p

q

q − 1

 =
∑
q≤p

1

q
+ γ −B − 1

2
×
∑
q>p

1

q2
− 1

3
×
∑
q>p

1

q3
− · · · .

Besides, we use that theorem 1.4:

log log θ(p) ≥ log log p+
S(p)

p× log p
− S(p)2

p2 × log p
.
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Putting all together yields the result:∑
q≤p

1

q
+ γ −B − 1

2
×
∑
q>p

1

q2
− 1

3
×
∑
q>p

1

q3
− · · ·

> γ + log log θ(p)

≥ γ + log log p+
S(p)

p× log p
− S(p)2

p2 × log p
.

Let distribute it and remove γ from the both sides:∑
q≤p

1

q
− log log p−B − 1

2
×
∑
q>p

1

q2
− 1

3
×
∑
q>p

1

q3
− · · · >

1

log p
×
(
S(p)

p
− S(p)2

p2

)
.

We know that δ(p) =
∑
q≤p

1
q − log log p−B. Moreover, we know that(
S(p)

p
− S(p)2

p2

)
≥ 0.

Certainly, according to the lemma 2.1, we have that S(p)
p < 1. Consequently,

we obtain that S(p)
p ≥ S(p)2

p2 under the assumption that S(p) ≥ 0, since for

every real number 0 ≤ x < 1, the inequality x ≥ x2 is always satisfied. To
sum up, we would have that

δ(p)− 1

2
×
∑
q>p

1

q2
− 1

3
×
∑
q>p

1

q3
− · · · > 0

because of
1

log p
×
(
S(p)

p
− S(p)2

p2

)
≥ 0.

However, the inequality

δ(p)− 1

2
×
∑
q>p

1

q2
− 1

3
×
∑
q>p

1

q3
− · · · > 0

is never satisfied when δ(p) ≤ 0. By contraposition, Nicolas(p) does not hold
when δ(p) ≤ 0 and S(p) ≥ 0 are satisfied for a prime p ≥ 127. In conclusion,
if Nicolas(p) does not hold for a prime p ≥ 127, then the Riemann Hypothesis
should be false due to the theorem 1.1.

4 Discussion

The Riemann Hypothesis has been qualified as the Holy Grail of Mathemat-
ics [4]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US 1,000,000 prize for the first correct so-
lution [2]. In the theorem 3.1, we show that if the inequalities δ(p) ≤ 0 and
S(p) ≥ 0 are satisfied for a prime p ≥ 127, then the Riemann Hypothesis
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should be false. Nevertheless, the well-known theorem 1.8 could be restated
as

lim
n→∞

δ(pn) = 0

because of there are infinitely many prime numbers pn. At the same time, we
can restate the theorem 1.3 as

lim
n→∞

S(pn) = 0.

Indeed, we think this work could help to the scientific community in the global
efforts for trying to solve this outstanding and difficult problem.
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